Journal of Chemical Physics, Vol.120, No.24, 11557-11563, 2004
Theory of the two step enantiomeric purification of 1,3 dimethylallene
An application of a recently proposed [P. Kral et al., Phys. Rev. Lett. 90, 033001 (2003)] two step optical control scenario to the purification of a racemic mixture of 1,3 dimethylallene is presented. Both steps combine adiabatic and diabatic passage phenomena. In the first step, three laser pulses of mutually perpendicular linear polarizations, applied in a "cyclic adiabatic passage" scheme, are shown to be able to distinguish between the L and D enantiomers due to their difference in matter-radiation phase. In the second step, which immediately follows the first, a sequence of pulses is used to convert one enantiomer to its mirror-imaged form. This scenario, which only negligibly populates the first excited electronic state, proves extremely useful for systems such as dimethylallene, which can suffer losses from dissociation and internal conversion upon electronic excitation. We computationally observe conversion of a racemic mixture of dimethylallene to a sample containing approximate to95% of the enantiomer of choice. (C) 2004 American Institute of Physics.