Journal of Chemical Physics, Vol.121, No.1, 592-603, 2004
Importance of chirality and reduced flexibility of protein side chains: A study with square and tetrahedral lattice models
Side chains of amino acid residues are the determining factor that distinguishes proteins from other unstable chain polymers. In simple models they are often represented implicitly (e.g., by spin states) or simplified as one atom. Here we study side chain effects using two-dimensional square lattice and three-dimensional tetrahedral lattice models, with explicitly constructed side chains formed by two atoms of different chirality and flexibility. We distinguish effects due to chirality and effects due to side chain flexibilities, since residues in proteins are L residues, and their side chains adopt different rotameric states. For short chains, we enumerate exhaustively all possible conformations. For long chains, we sample effectively rare events such as compact conformations and obtain complete pictures of ensemble properties of conformations of these models at all compactness region. This is made possible by using sequential Monte Carlo techniques based on chain growth method. Our results show that both chirality and reduced side chain flexibility lower the folding entropy significantly for globally compact conformations, suggesting that they are important properties of residues to ensure fast folding and stable native structure. This corresponds well with our finding that natural amino acid residues have reduced effective flexibility, as evidenced by statistical analysis of rotamer libraries and side chain rotatable bonds. We further develop a method calculating the exact side chain entropy for a given backbone structure. We show that simple rotamer counting underestimates side chain entropy significantly for both extended and near maximally compact conformations. We find that side chain entropy does not always correlate well with main chain packing. With explicit side chains, extended backbones do not have the largest side chain entropy. Among compact backbones with maximum side chain entropy, helical structures emerge as the dominating configurations. Our results suggest that side chain entropy may be an important factor contributing to the formation of alpha helices for compact conformations.(C) 2004 American Institute of Physics.