화학공학소재연구정보센터
Journal of Chemical Physics, Vol.121, No.2, 902-913, 2004
Coherent low-frequency motions of hydrogen bonded acetic acid dimers in the liquid phase
Ultrafast vibrational dynamics of cyclic hydrogen bonded dimers and the underlying microscopic interactions are studied in temporally and spectrally resolved pump-probe experiments with 100 fs time resolution. Femtosecond excitation of the O-H and/or O-D stretching mode gives rise to pronounced changes of the O-H/O-D stretching absorption displaying both rate-like kinetic and oscillatory components. A lifetime of 200 fs is measured for the v=1 state of the O-H stretching oscillator. The strong oscillatory absorption changes are due to impulsively driven coherent wave packet motions along several low-frequency modes of the dimer between 50 and 170 cm(-1). Such wave packets generated via coherent excitation of the high-frequency O-H/O-D stretching oscillators represent a clear manifestation of the anharmonic coupling of low- and high-frequency modes. The underdamped low-frequency motions dephase on a time scale of 1-2 ps. Calculations of the vibrational potential energy surface based on density functional theory give the frequencies, anharmonic couplings, and microscopic elongations of the low-frequency modes, among them intermolecular hydrogen bond vibrations. Oscillations due to the excitonic coupling between the two O-H or O-D stretching oscillators are absent as is independently confirmed by experiments on mixed dimers with uncoupled O-H and O-D stretching oscillators. (C) 2004 American Institute of Physics.