화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.126, No.24, 7627-7638, 2004
Electronic structure control of the nucleophilicity of transition metal-thiolate complexes: An experimental and theoretical study
New metal(II)-thiolate complexes supported by the tetradentate ligand 1,5-bis(2-pyridylmethyl)-1,5-diazacyclooctane (L(8)py(2)) have been synthesized and subjected to physical, spectroscopic, structural, and computational characterization. The X-ray crystal structures of these complexes, [L(8)py(2)M(S-C6H4-p-CH3)]BPh4 (M = Co, Ni, Zn), reveal distorted square-pyramidal divalent metal ions with four equatorial nitrogen donors from L(8)py(2) and axial p-toluenethiolate ligands. The reactions of the complexes with benzyl bromide produce isolable metal(II)-bromide complexes (in the cases of Co and Ni) and the thioether benzyl-p-tolylsulfide. This reaction is characterized by a second-order rate law (v = k(2)[L(8)py(2)M(SAr)(+)][PhCH2Br]) for all complexes (where M = Fe, Co, Ni, or Zn). Of particular significance is the disparity between k2 for M = Fe and Co versus k(2) for M = Ni and Zn, in that k(2) for M = Ni and Zn is ca. 10 times larger (faster) than k(2) for M = Fe and Co. An Eyring analysis of k(2) for [L(8)py(2)Co(SAr)](+) and [L(8)py(2)Ni(SAr)](+) reveals that the reaction rate differences are not rooted in a change in mechanism, as the reactions of these complexes with benzyl bromide exhibit comparable activation parameters (M = Co: DeltaH(double dagger) = 45(2) kJ mol(-1), DeltaS(double dagger) = -144(6) J mol(-1) K-1; M = Ni: DeltaH(double dagger) = 43(3) M mol(-1), DeltaS(double dagger) = -134(8) J mol(-1) K-1). Electronic structure calculations using density functional theory (DFT) reveal that the enhanced reaction rate for [L(8)py(2)Ni(SAr)](+) is rooted in a four-electron repulsion (or a "filled/filled interaction") between a completely filled nickel(11) d(pi) orbital and one of the two thiolate frontier orbitals, a condition that is absent in the Fe(II) and Co(II) complexes. The comparable reactivity of [L(8)py(2)Zn(SAr)](+) relative to that of [L(8)py(2)Ni(SAr)](+) arises from a highly ionic zinc(II)-thiolate bond that enhances the negative charge density on the thiolate sulfur. DFT calculations on putative thioether-coordinated intermediates reveal that the Co(II)- and Zn(II)-thioethers exhibit weaker M-S bonding than Ni(II). These combined results suggest that while Ni(II) may serve as a competent replacement for Zn(II) in alkyl group transfer enzymes, turnover may be limited by slow product release from the Ni(II) center.