화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.42, No.4, 433-438, August, 2004
수용액상 케톤계 유기화합물의 투과증발: Silicalite-1 제올라이트 분리막
Pervaporation of Ketone Organic Compounds from Their Aqueous Solution: Silicalite-1 Zeolite Membrane
E-mail:
초록
본 연구에서는 silicalite-1 분리막을 이용한 투과증발 막분리 공정을 이용하여 케톤계 휘발성 유기화합물인 아세톤과 MEK(methyl ethyl ketone)를 분리하고자 하였다. 공급되는 수용액 상 아세톤의 공급 농도가 0.8 wt%에서 20 wt%, MEK의 공급 농도가 1 wt%에서 15 wt%로 증가함에 따라 아세톤의 투과플럭스는 110 g/m2·h에서 480 g/m2·h, MEK의 투과플럭스는 30 g/m2·h에서 80 g/m2·h로 증가하였으며, 아세톤의 선택도는 140에서 40으로, MEK의 선택도는 85에서 10으로 감소하는 것을 관찰할 수 있었다. 아세톤의 투과 플럭스는 MEK의 투과 플럭스보다 동일한 농도에서 4-6배, 아세톤의 선택도는 MEK의 선택도보다 2-4배 크게 나타남을 알 수 있었다.
Volatile organic compounds of ketone are separated by pervaporation using a silicalite-1 zeolite membrane. As a feed concentration of acetone increased from 0.8 wt% to 20 wt% and a feed concentration of MEK (methyl ethyl ketone) increased from 1 wt% to 15 wt%, the permeation flux of acetone increased from 110 to 480 g/m2 · h and the MEK permeation flux also increased from 30 to 80 g/m2 · h. As a feed concentration of acetone and MEK (methyl ethyl ketone) increased in the same concentration range, a selectivity of acetone decreased from 140 to 40 and a selectivity of MEK decreased from 85 to 10. It was found that the permeation flux of acetone was 4-6 times higher than that of MEK and the selectivity was 2-4 times higher than that of MEK at a same feed concentration.
  1. Lee YM, Polymer, 13(1), 3 (1989) 
  2. Hong YK, Hong WH, HWAHAK KONGHAK, 36(4), 524 (1998)
  3. Pereira CC, Habert AC, Nobrega R, Borges CP, J. Membr. Sci., 138(2), 227 (1998) 
  4. Hofmann D, Fritz L, Paul D, J. Membr. Sci., 144(1-2), 145 (1998) 
  5. Liu Q, Noble RD, Falconer JL, Funke HH, J. Membr. Sci., 117(1-2), 163 (1996) 
  6. Verkerk AW, van Male P, Vorstman MAG, Keurentjes JTF, Sep. Purif. Technol., 22-23(1), 689 (2001) 
  7. Negishi H, Mizuno R, Yanagishita H, Kitamoto D, Ikegami T, Matsuda H, Haraya K, Sano T, Desalination, 144(1-3), 47 (2002) 
  8. Breck DW, Zeolite molecular sieves, John Wiley and Sons, New York, NY (1974)
  9. Baerlocher C, Meier WM, Olson DH, Atlas of Zeolite frame work types, 5th ed., Elsevier, New York, NY (2001)
  10. Sano T, Ejiri S, Yamada K, Kawakami Y, Yanagishita H, J. Membr. Sci., 123(2), 225 (1997) 
  11. Nomura M, Yamaguchi T, Nakao S, J. Membr. Sci., 144(1-2), 161 (1998) 
  12. Sano T, Yamagishita H, Kiyozumi Y, Mizukami F, Haraya K, J. Membr. Sci., 95(3), 221 (1994) 
  13. Arruebo M, Coronas J, Menendez M, Santamaria J, Sep. Purif. Technol., 25(1-3), 275 (2001) 
  14. Bowen TC, Li SG, Tuan VA, Falconer JL, Noble RD, Desalination, 147(1-3), 327 (2002) 
  15. http://www.iza-synthesis.org/Recipes/Silicalite-1.html.
  16. Reid RC, Prausnitz JM, Poling BE, The Properties of gases and liquids, 4th ed., McGraw-Hill, New York, NY (1987)