화학공학소재연구정보센터
Macromolecular Research, Vol.12, No.4, 359-366, August, 2004
Synthesis of the Polysaccharide, (1→5)- α-D-Ribofuranan and Its Catalytic Activities for the Hydrolysis of Phosphates and the Cleavage of Nucleic Acids
E-mail:
The polysaccharide, (1→5)- α-D-ribofuranan, was synthesized by a cationic ring-opening polymerization of 1,4-anhydro-2,3-di-O-benzyl-α-D-ribopyranose with the aid of boron trifluoride etherate and subsequent debenzylation. This polysaccharide catalyzed the hydrolysis of ethyl p-nitrophenyl phosphate, uridylyl(3´→5´)uridine ammonium salt, and 4-tert-butylcatechol cyclic phosphate N-methyl pyridinium. The polymer also catalyzed the cleavage of nucleic acids (DNA and RNA). The hydrolysis of ethyl p-nitrophenyl phosphate in the presence of the polymer was accelerated by 1.5×103 times relative to the uncatalyzed reaction. The catalytic activity was attributable to the vic-cis-diols of the riboses being located inside the active center that is formed by polymer chain folding; these diols form hydrogen bonds with two phosphoryl oxygen atoms of the phosphates so as to activate the phosphorus atoms to be attacked by nucleophile (H2O).
  1. Kunitake T, Okahata Y, Adv. Polym. Sci., 20, 159 (1976)
  2. Kunitake T, in Polymer-supported Reactions in Organic Synthesis, P. Hodge and D. D. Sherrington, Eds., John Wiley & Sons, New York, 195 (1980)
  3. Overberger CG, Pierre TSt, Vorchheimer N, Yaroslavsky S, J. Am. Chem. Soc., 85, 3513 (1963) 
  4. Overberger CG, Okamoto Y, Macromolecules, 5, 363 (1972) 
  5. Guerrier-Takada C, Altman S, Science, 223, 285 (1983) 
  6. Breaker RR, Joyce GF, Chem. Biol., 1, 223 (1994) 
  7. Breslow R, Doherty JB, Buillot G, Lipsey C, J. Am. Chem. Soc., 100, 3227 (1978) 
  8. Breslow R, Bovy P, Hersh CL, J. Am. Chem. Soc., 102, 2115 (1980) 
  9. Han MJ, Yoo KS, Chang JY, Ha TK, Angew. Chem.-Int. Edit., 39, 347 (2000) 
  10. Han MJ, Yoo KS, Cho TJ, Chang JY, Cha YJ, Nam SH, Chem. Commun., 163 (1997) 
  11. Han MJ, Yoo KS, Kim KH, Lee GH, Chang JY, Macromolecules, 30(18), 5408 (1997) 
  12. Khwaja TA, Resse CB, Stewart JCM, J. Chem. Soc., 2092 (1970)
  13. Uryu T, Yamanouchi J, Kato T, Higuchi S, Matsuzaki K, J. Am. Chem. Soc., 105, 6865 (1983) 
  14. Uryu T, Kitano K, Ito K, Yamanouchi J, Matsuzaki K, Macromolecules, 14, 1 (1981) 
  15. Ha TK, Suleimenov OM, Han MJ, Theochem-J. Mol. Struct., 574, 75 (2001) 
  16. Sugimura T, Fujimura S, Hasegawa S, Kawamura Y, Biochim. Biophys. Acta, 138, 438 (1967)
  17. Ueda K, Hayaishi O, Ann. Rev. Biochem., 54, 73 (1985) 
  18. Lautier D, Lagueus J, Thibodeau J, Mennard L, Poirier GG, Mol. Cell. Biochem., 122, 171 (1993) 
  19. Alvarez-Gonzalez R, Pacheco-Rodriguez G, Men-doza-Alvarez H, Mol. Cell. Biochem., 138, 33 (1994) 
  20. Maruta H, Matsumura N, Tanuma S, Biochem. Biophys. Res. Commun., 236, 265 (1997) 
  21. Satoh MS, Poirier GG, Lindahl T, Biochemistry, 33, 7099 (1994) 
  22. Simbulan-Rosenthal CM, Rosenthal DS, Lyer S, Boulares AH, Smulson ME, J. Biol. Chem., 273, 13703 (1998) 
  23. Malanga M, Althaus FR, J. Biol. Chem., 269, 17691 (1994)
  24. Satoh MS, Poirier GG, Lindahl T, Biochemistry, 33, 7099 (1994)