- Previous Article
- Next Article
- Table of Contents
Korean Journal of Chemical Engineering, Vol.21, No.5, 921-928, September, 2004
Microstructure and Phase Behavior of Concentrated Silica Particle Suspensions
E-mail:
Dispersion stability and microstructural transition of colloidal silica suspensions were examined by rheological measurements under either steady simple shear or oscillatory flow. Monodisperse silica particles were prepared by the so-called modified Stober method and were stabilized by either steric or electrostatic repulsive force. Depending upon the methods of stabilization, the suspension showed hard-sphere or soft-sphere response. In particular, silica suspensions exhibited hardsphere response when the silica spheres coated with 3-(trimethoxysilyl)propyl methacrylate (MPTS;CH3O)3Si(CH2)3OCOC(CH3)=CH2) were dispersed in a refractive-index matching solvent, tetrahydrofurfuryl alcohol. On the other hand, silica particles in aqueous media behaved like soft spheres with long-range elec-trostatic repulsive interactions when they were coated with steric layer of aminosilane coupling agent, N-[3-(trimethoxysilyl)propyl]ethylenediamine((CH3O)3Si(CH2)3NHCH2CH2NH2). In this case, the electrostatic repulsion or equivalently the softness of the silica spheres was contorlled by the ionic strength using a symmetric salt KCI. Both the hardsphere and soft-sphere suspensions showed stable shear-thinning behavior without experiencing shear-induced flocculation. Moreover, the oscillatory shear rheology. showed that the electrostatically stabilized soft-sphere suspensions underwent a microstuctural transition from liquid-like to solid-like structure when either the particle loading increased or the ionic strength was recuced.
Keywords:Dispersion Stability;Silica Suspension;Silane Coupling Agent;Microstructure;Phase Transition;Hard Spheres;Soft Spheres;Rheological Behavior
- Barnes HA, Hutton JF, Walters K, "An Introduction to Rheology," Elsevier Science Publishers, New York, USA (1989)
- Barnes HA, J. Rheol., 33, 329 (1989)
- Bogush GH, Tracy MA, Zukoski CG, J. Non-Cryst. Solids, 104, 95 (1988)
-
Brady JF, Chem. Eng. Sci., 56(9), 2921 (2001)
-
Chen LB, Ackerson BJ, Zukoski CF, J. Rheol., 38(2), 193 (1994)
-
Chow MK, Zukoski CF, J. Rheol., 39(1), 33 (1995)
-
Chow MK, Zukoski CF, J. Rheol., 39(1), 15 (1995)
-
Fagan ME, Zukoski CF, J. Rheol., 41(2), 373 (1997)
- Foss DR, Brady JF, J. Fluid Mech., 407, 167 (2000)
-
Franks GV, Zhou ZW, Duin NJ, Boger DV, J. Rheol., 44(4), 759 (2000)
- Gast AP, Russel WB, Phys. Today, 51(12), 24 (1998)
- Kose A, Ozaka M, Takano K, Kobayashi Y, Hachisu S, J. Colloid Interface Sci., 44, 330 (1973)
- Kose A, Hachisu S, J. Colloid Interface Sci., 55, 487 (1976)
- Larson RG, "The Structure and Rheology of Complex Fluids," Oxford University Press, New York, USA (1999)
- Laun HM, Bung R, Hess S, Loose W, Hess O, Hahn K, Hadicke E, Hingmann R, Schmidt F, Lindner P, J. Rheol., 36, 743 (1992)
-
Lee JD, Yang SM, J. Colloid Interface Sci., 205(2), 397 (1998)
-
Lee JD, So JH, Yang SM, J. Rheol., 43(5), 1117 (1999)
- Lewis JA, J. Am. Ceram. Soc., 83, 2341 (2000)
- Oh MH, So JH, Lee JD, Yang SM, Korean J. Chem. Eng., 16(4), 532 (1999)
- Perez MQ, Femandez JC, Alvarez RH, Adv. Colloid Interface Sci., 95, 295 (2002)
- Philipse AP, Vrij A, J. Colloid Interface Sci., 128, 121 (1989)
- Quemada D, Berli C, Adv. Colloid Interface Sci., 98, 51 (2002)
- Russel WB, Saville DA, Schowalter WR, "Colloidal Dispersion," Cambridge University Press, New York, USA (1989)
- So JH, Bae SH, Yang SM, Kim DH, Korean J. Chem. Eng., 18(4), 547 (2001)
-
So JH, Oh MH, Lee JD, Yang SM, J. Chem. Eng. Jpn., 34(2), 262 (2001)
-
So JH, Yang SM, Hyun JC, Chem. Eng. Sci., 56(9), 2967 (2001)
- So JH, Yang SM, Kim C, Hyun JC, Colloids Surf. A: Physicochem. Eng. Asp., 190, 89 (2001)
- Stavov V, Zhdanov V, Meireles M, Molle C, Adv. Colloid Interface Sci., 96, 279 (2002)
- Stober W, Fink A, Bohn E, J. Colloid Interface Sci., 26, 62 (1968)
- Tadros TF, Adv. Colloid Interface Sci., 68, 97 (1996)