Polymer(Korea), Vol.28, No.5, 374-381, September, 2004
제올라이트 입자를 첨가한 폴리에틸렌 필름의 기체 투과성
Gas Permeability of Polyethylene Films Containing Zeolite Powder
E-mail:
초록
제올라이트 분말을 첨가한 저밀도 폴리에틸렌 (LDPE) 복합 필름의 CO2, O2, N2에 대한 기체 투과성을 조사하였다. 제올라이트 첨가 필름은 금속 양이온 혹은 계면 활성제로 표면 개질한 제올라이트 분말을 20 wt% 함유하는 LDPE 마스터배치를 제조한 후 이를 LDPE 수지와 용융혼합하여 중공필름 성형법으로 제조하였다. 최종적으로 제올라이트 분말이 0, 3, 5, 10 wt% 함유된 복합 필름을 얻었으며 이를 기체 투과도 측정장치를 제작하여 분석하였다. 모든 경우에 있어 제올라이트 함량이 증가함에 따라 기체 투과도는 감소한 후 점차 증가하는 경향을 보여주었다. 계면 활성제로 표면 개질한 제올라이트 입자는 매트릭스 수지와의 계면 접착력을 향상시켰지만 표면 개질 이온의 종류에 따른 필름의 기체 투과 특성에는 뚜렷한 차이가 나타나지 않았다. 제올라이트 첨가 필름의 경우 각 기체의 투과도에 대한 온도 의존성의 차이는 순수 LDPE 필름에 비해 다소 작게 나타났다.
Gas permeability of low density polyethylene (LDPE) film containing zeolite powder for CO2, O2 and N2 were investigated. Zeolite powders modified by cations or surfactant were compounded with LDPE to produce 20 wt% masterbatch. After blending the masterbatch with LDPE, zeolite filled films were prepared by the blown film process. Finally, the composite films containing zeolite loadings of 0, 3, 5, and 10 wt% were produced. A gas permeability apparatus based on the variable volume principle was designed to analyze the characteristics of films. Experiments showed a general trend that gas permeabilities first decreased and then increased as the zeolite content was increased. Surfactant modified zeolite showed a better interfacial adhesion with the matrix, but the film did not show a discernible difference in gas permeability compared with the other modified films. The difference of temperature dependences in the gas permeabilities of composite films was slightly smaller than that of LDPE film.
- Spillman RW, Sherwin MB, Chem. Tech., 15, 378 (1990)
- Tsujita Y, "Physical Chemistry of Membranes", in Membrane Science and Technology, Y. Osada and T. Nakagawa, Editors, Marcel Dekker, New York (1992)
- Dirim SN, "Manufacturing a new protective polyethylene based film containing zeolites for packaging of food", Ph.D. Thesis, Middle East Technical University, Turkey (2000)
- Hodgson SC, Casey RJ, Bigger SW, Polym. -Plast. Technol. Eng., 41, 795 (2002)
- Boom JP, Punt IGM, Zwijnenberg H, de Boer R, Bargeman D, Smolders CA, Strathmann H, J. Membr. Sci., 138(2), 237 (1998)
- Hennepe HJC, Bareman D, Mulder MHV, Smolders CA, J. Membr. Sci., 35, 39 (1987)
- Jia MD, Peinemann KV, Behling RD, J. Membr. Sci., 73, 119 (1992)
- Jia MD, Peinemann KV, Behling RD, J. Membr. Sci., 57, 289 (1991)
- Suer MG, Bac N, Yilmaz L, J. Membr. Sci., 91(1-2), 77 (1994)
- Duval JM, Kemperman AJ, Folkers B, Mulder MH, Desgrandchamps G, Smolders CA, J. Appl. Polym. Sci., 54(4), 409 (1994)
- Tantekin-Ersolmaz SB, Atalay-Orala C, Tather M, Erdem-Senatalar A, Schoeman B, Sterte J, J. Membr. Sci., 175(2), 285 (2000)
- Hiyama K, Moriyasu N, Omori T, Miyagawa O, Seino Y, Goto Y, J. Antibact. Antifung. Agents., 23, 197 (1995)
- Metin D, Tihminlioglu F, Balkose D, Ulku S, Compos. Pt. A-Appl. Sci. Manuf., 35, 23 (2004)
- Stern SA, Krishnakumar B, Nadakatti SM, "Permeability of Polymers to Gases and Vapors", in Physical Properties of Polymers Handbook, J. E. Mark, Editor, AIP Press, New York (1996)
- Stern SA, Gareis PJ, Sinclair TF, Mohr PH, J. Appl. Polym. Sci., 7, 2035 (1963)
- Breck DW, Zeolite Molecular Sieves, Wiley, New York (1974)
- Moore JW, Stanitski CL, Jurs PC, Chemistry: The Molecular Science, Brooks/Cole (2002)
- Aoki K, Tuan VA, Falconer JL, Noble RD, Microporous Mesoporous Mater., 39, 485 (2000)