화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.15, No.7, 786-790, November, 2004
폐비닐 열분해 Wax와 무연탄을 이용한 고열량 복합연료의 제조 및 연소특성
Preparation of Hybrid Fuel of High Calories Using Anthracite and Thermal Degradation Wax from Waste Polyethylene Film, and Its Combustion Characteristics
E-mail:
초록
본 연구에서는 페 PE 필름을 열분해 하여 제조한 왁스를 사용하여 고열량 복합 고형 연료를 제조하고 그들의 연소특성을 시험하였다. 생성된 왁스의 분자량은 열분해 온도의 변화에 따라 4000~5000 범위의 분자량 분포를 보였으며, 복합 고형연료 중 배합된 왁스의 함량이 증가할수록 휘발분이 높았고, 첨가된 소량의 무연탄 내에 함유된 금속산화물과 알칼리 물질에 의한 촉매작용으로 연소속도와 연소시간이 증가하였다. 배합비에 따라 복합 고형연료의 발열량은 7000~9000 kcal/kg 이었다. 복합 고형연료의 초기열분해 온도는 200~400 ℃이었고 왁스 첨가량이 증가함에 따라 낮아졌으며, 2차 열분해 온도는 600 ℃ 부근이었으며, 첨가된 무연탄의 양이 증가함에 따라 상승하였다. 한편 고형연료의 연소 배가스 중 초기 NO 농도는 120 ppm 이하, SO2 농도는 20 ppm 이하, CO2는 5~10%, O2는 10~15% 이었으며 CO는 연소시작 60 min 이후에서 300 ppm 이하로 연료 배합비에 관계없이 대기오염물질의 배출허용기준치 이하로 나타났다.
In this study, hybrid fuels of high calorie values were produced by using the wax which was obtained by thermal degradation from waste polyethylene (PE) films. Their combustion behavior was also investigated. It was shown that the molecular weight of produced wax was 4000~5000. The volatile components and the combustion time of the hybrid fuels were increased with the increase of wax and anthracite contents due to the catalytic reaction by metallic compounds in anthracite. The calorific value of hybrid fuels showed 7000~9000 kcal/kg. The initial thermal degradation temperature of hybrid fuels was decreased with the increase of wax content, and the values showed 200~400 ℃. Also, the second thermal degradation temperature appeared at 600 ℃ and was increased with the increment of anthracite content in the hybrid fuels. The concentration of hot off-gases NO, SO2, CO2 and O2 were 120 ppm, 20 ppm, 5~10%, and 10~15%, respectively. CO concentration was below 300 ppm in the hot off-gases and their values were lower than the environmental emission standard limit.
  1. Cameron DR, J. Environ. Eng.-ASCE, 114, 233 (1988)
  2. Nissen WR, Combustion and incineration process, 371, Marcel Dekker Ind., New York (1978)
  3. Klass DL, Sen CT, Chem. Eng. Prog., 46 (1989)
  4. Lee CC, Huffman GL, Environ. Prog., 8, 143 (1989)
  5. Doh KS, Lee KW, J. Korea Soc. Waste Manage., 9, 38 (1992)
  6. McCaffrey WC, Cooper DG, Kamal MR, Polym. Degrad. Stabil., 47, 133 (1995) 
  7. McCaffrey WC, Cooper DG, Kamal MR, Polym. Degrad. Stabil., 62, 513 (1998) 
  8. Uddin MA, Koizumi K, Murata K, Sakata Y, Polym. Degrad. Stabil., 56, 37 (1997) 
  9. So HJ, You MS, Kim KH, Roh NS, Shin DH, Yi MS, Lee SK, Ohm TI, J. Korea Soc. Waste Manage., 20, 393 (2003)
  10. Hong SC, Ph.D Thesis, Korea Univ., Seoul, Korea (1990)
  11. Alvfors P, Svedberg G, Chem. Eng. Sci., 43, 1183 (1988) 
  12. Doh KS, Lee KW, J. Korean Ind. Eng. Chem., 8, 77 (1991)
  13. Yu JH, Shin HS, Yeo SJ, Kim JB, Lee DS, Kim YD, Zeolite synthesis from coal fly ash and adsorption characteristics for cadmium ion removal, 213, Abstracts Presented at the KSEE Meeting (2002)
  14. Lee SH, Hyun JS, Cha SY, Kim HH, Gong SH, Study on the domestic anthracite as an adsorbent, 241, Abstracts Presented at the KSEE Metting (1999)
  15. Moon SH, Sung HJ, Ohm TI, J. Korean Soc. Waste Manage., 20 (2003)