화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.10, No.6, 995-1002, November, 2004
Catalytic Performance of Metal-Substituted ZSM-5 Zeolites for Vapor Phase Beckmann Rearrangement of Cyclohexanone Oxime
E-mail:
Various MeZSM-5 (Me = B, Al, Fe, Ga) catalysts having different Si/Me ratios have been synthesized and characterized, and the vapor phase Beckmann rearrangement of cyclohexanone oxime to ε-caprolactam was undertaken using these catalysts. The results from NH3-TRD demonstrate that the metal substitution into the ZSM-5 framework produced weak or strong acid sites. The TPD profiles of AlZSM-5, FeZSM-5, and GaZSM-5 catalysts exhibited a broad range of weak and strong acid sites. On the other hand, the TPD profiles of BZSM-5 catalysts exhibited relatively small amounts of weak acid sites. The catalytic activities of the MeZSM-5 catalysts depended on the Si/Me ratio and the substituted metal type. The MeZSM-5 catalysts having high Si/Me ratios exhibited good catalytic performance. However, all the MeZSM-5 catalysts were rapidly deactivated with time on stream. In addition, the degree of deactivation with time was different for each substituted metal type. After reacting for 8 h, the order for the catalytic activities was ALZSM-5 > GaZSM-5 > BZSM-5 > FeZSM-5. These results are due to the acidities of the MeZSM-5 catalysts and the inherent characteristics of the substituted metal. The results from NH3-TPD and the catalytic reaction disclose that both weak and strong acid sites were not efficient for high catalytic performance in the MeZSM-5 catalyst system for vapor phase Beckmann rearrangement of cyclohexanone oxime.
  1. Immuel O, Schwarz HH, Starcke H, Swoden W, Chem. Ing. Tech., 56, 612 (1984)
  2. Sato S, Urabe K, Izumi Y, J. Catal., 102, 99 (1986)
  3. Sato S, Hasebe H, Sakurai S, Urabe K, Izumi Y, Appl. Catal., 29, 107 (1987) 
  4. Ushikubo T, Wada K, J. Catal., 148(1), 138 (1994)
  5. Ko Y, Kim MH, Kim SJ, Seo G, Kim MY, Uh YS, Chem. Commun., 829 (2000)
  6. Kim MH, Ko Y, Kim SJ, Uh YS, Appl. Catal. A: Gen., 210(1-2), 345 (2001)
  7. Landis PS, Venuto PB, J. Catal., 6, 245 (1966)
  8. Sato H, Hirose K, Kitamura M, Nakamura Y, Stud. Surf. Sci. Catal., 49, 1213 (1989)
  9. Sauer J, Bleiber A, Catal. Today, 3, 485 (1988)
  10. Roseler J, Heitmann G, Holderich WF, Appl. Catal. A: Gen., 144(1-2), 319 (1996)
  11. Komatsu T, Maeda T, Yashima T, Microporous Mesoporous Mater., 35-36, 173 (2000)
  12. Sato H, Hirose K, Nakamura Y, Chem. Lett., 1987 (1993)
  13. Heitmann GP, Dahlhoff G, Holderich WF, J. Catal., 186(1), 12 (1999)
  14. Sato H, Ishii N, Hirose K, Nakamura S, Stud. Surf. Sci. Catal., 28, 755 (1986)
  15. Holderich WF, Stud. Surf. Sci. Catal., 46, 193 (1989)
  16. Reddy JS, Ravishankar R, Sivasanker S, Ratnasamy P, Catal. Lett., 17, 139 (1993)
  17. Anand R, Khomane RB, Rao BS, Kulkarni BD, Catal. Lett., 78(1-4), 189 (2002)
  18. Thangraj A, Sivasanker S, Ratnasamy P, J. Catal., 137, 252 (1992)
  19. Corma A, Garcia H, Primo J, Zeolites, 11, 593 (1991)
  20. Singh PS, Bandyopadhyay R, Hegde SG, Rao BS, Appl. Catal. A: Gen., 136(2), 249 (1996)
  21. Albers P, Seibold K, Haas T, Prescher G, Holderich WF, J. Catal., 176(2), 561 (1998)
  22. Treacy MMJ, Higgins JB, in Collection of Simulated XRD Powder Patterns for Zeolites, 4th Edn., p. 234, Elsevier, Amsterdam (2001)
  23. Chang W, Lee CH, Kim MY, Ahn BJ, J. Ind. Eng. Chem., 7(2), 121 (2001)
  24. Woo HH, Hong JS, Suh JK, Lee KY, Lee JM, J. Ind. Eng. Chem., 10(4), 645 (2004)
  25. Huybrechts DRC, Vaesen I, Li HX, Jacobs PA, Catal. Lett., 8, 237 (1991)
  26. Ko YS, Ahn WS, Microporous Mesoporous Mater., 30, 283 (1999)
  27. Flanigen EM, Knatami M, Szymanski HA, Adv. Chem. Ser., 101, 201 (1971)
  28. Corma A, Corell C, Perez-Pariente J, Guil JM, Guil-Lopez R, Nicolopoulos S, Gonzalez-Calbet J, Vallet-Regi M, Zeolites, 16, 7 (1996)
  29. Topsoe NY, Pedersen K, Derouane EG, J. Catal., 70, 41 (1981)