Journal of Industrial and Engineering Chemistry, Vol.10, No.6, 995-1002, November, 2004
Catalytic Performance of Metal-Substituted ZSM-5 Zeolites for Vapor Phase Beckmann Rearrangement of Cyclohexanone Oxime
E-mail:
Various MeZSM-5 (Me = B, Al, Fe, Ga) catalysts having different Si/Me ratios have been synthesized and characterized, and the vapor phase Beckmann rearrangement of cyclohexanone oxime to ε-caprolactam was undertaken using these catalysts. The results from NH3-TRD demonstrate that the metal substitution into the ZSM-5 framework produced weak or strong acid sites. The TPD profiles of AlZSM-5, FeZSM-5, and GaZSM-5 catalysts exhibited a broad range of weak and strong acid sites. On the other hand, the TPD profiles of BZSM-5 catalysts exhibited relatively small amounts of weak acid sites. The catalytic activities of the MeZSM-5 catalysts depended on the Si/Me ratio and the substituted metal type. The MeZSM-5 catalysts having high Si/Me ratios exhibited good catalytic performance. However, all the MeZSM-5 catalysts were rapidly deactivated with time on stream. In addition, the degree of deactivation with time was different for each substituted metal type. After reacting for 8 h, the order for the catalytic activities was ALZSM-5 > GaZSM-5 > BZSM-5 > FeZSM-5. These results are due to the acidities of the MeZSM-5 catalysts and the inherent characteristics of the substituted metal. The results from NH3-TPD and the catalytic reaction disclose that both weak and strong acid sites were not efficient for high catalytic performance in the MeZSM-5 catalyst system for vapor phase Beckmann rearrangement of cyclohexanone oxime.
- Immuel O, Schwarz HH, Starcke H, Swoden W, Chem. Ing. Tech., 56, 612 (1984)
- Sato S, Urabe K, Izumi Y, J. Catal., 102, 99 (1986)
- Sato S, Hasebe H, Sakurai S, Urabe K, Izumi Y, Appl. Catal., 29, 107 (1987)
- Ushikubo T, Wada K, J. Catal., 148(1), 138 (1994)
- Ko Y, Kim MH, Kim SJ, Seo G, Kim MY, Uh YS, Chem. Commun., 829 (2000)
- Kim MH, Ko Y, Kim SJ, Uh YS, Appl. Catal. A: Gen., 210(1-2), 345 (2001)
- Landis PS, Venuto PB, J. Catal., 6, 245 (1966)
- Sato H, Hirose K, Kitamura M, Nakamura Y, Stud. Surf. Sci. Catal., 49, 1213 (1989)
- Sauer J, Bleiber A, Catal. Today, 3, 485 (1988)
- Roseler J, Heitmann G, Holderich WF, Appl. Catal. A: Gen., 144(1-2), 319 (1996)
- Komatsu T, Maeda T, Yashima T, Microporous Mesoporous Mater., 35-36, 173 (2000)
- Sato H, Hirose K, Nakamura Y, Chem. Lett., 1987 (1993)
- Heitmann GP, Dahlhoff G, Holderich WF, J. Catal., 186(1), 12 (1999)
- Sato H, Ishii N, Hirose K, Nakamura S, Stud. Surf. Sci. Catal., 28, 755 (1986)
- Holderich WF, Stud. Surf. Sci. Catal., 46, 193 (1989)
- Reddy JS, Ravishankar R, Sivasanker S, Ratnasamy P, Catal. Lett., 17, 139 (1993)
- Anand R, Khomane RB, Rao BS, Kulkarni BD, Catal. Lett., 78(1-4), 189 (2002)
- Thangraj A, Sivasanker S, Ratnasamy P, J. Catal., 137, 252 (1992)
- Corma A, Garcia H, Primo J, Zeolites, 11, 593 (1991)
- Singh PS, Bandyopadhyay R, Hegde SG, Rao BS, Appl. Catal. A: Gen., 136(2), 249 (1996)
- Albers P, Seibold K, Haas T, Prescher G, Holderich WF, J. Catal., 176(2), 561 (1998)
- Treacy MMJ, Higgins JB, in Collection of Simulated XRD Powder Patterns for Zeolites, 4th Edn., p. 234, Elsevier, Amsterdam (2001)
- Chang W, Lee CH, Kim MY, Ahn BJ, J. Ind. Eng. Chem., 7(2), 121 (2001)
- Woo HH, Hong JS, Suh JK, Lee KY, Lee JM, J. Ind. Eng. Chem., 10(4), 645 (2004)
- Huybrechts DRC, Vaesen I, Li HX, Jacobs PA, Catal. Lett., 8, 237 (1991)
- Ko YS, Ahn WS, Microporous Mesoporous Mater., 30, 283 (1999)
- Flanigen EM, Knatami M, Szymanski HA, Adv. Chem. Ser., 101, 201 (1971)
- Corma A, Corell C, Perez-Pariente J, Guil JM, Guil-Lopez R, Nicolopoulos S, Gonzalez-Calbet J, Vallet-Regi M, Zeolites, 16, 7 (1996)
- Topsoe NY, Pedersen K, Derouane EG, J. Catal., 70, 41 (1981)