화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.10, No.6, 1043-1051, November, 2004
Enhanced Desorption of Phenanthrene from Aquifer Sand Using Amphiphilic Anionic Polyurethane Nanoparticles
E-mail:
A novel process for washing soil using polymer nanoparticles is presented in this paper. Amphiphilic crosslinked polyurethane (ACPU) nanoparticles were synthesized via soap-free emulsion polymerization of urethane acrylate anionomers (UAA). Even though ACPU nanoparticles exhibited lower phenanthrene solubilizing performance and interfacial activity than sodium dodecyl sulfate (SDS), ACPU nanoparticles exhibited better extraction efficiency for sorbed phenanthrene than did SDS at a relatively lower concentration. This phenomenon occurred because the degree of sorption of ACPU nanoparticles to the aquifer sand was lower than that of the surfactant, owing to the chemically cross-linked nature of the ACPU nanoparticles. From an in-situ extraction test, ACPU nanoparticles extracted greater greater amounts of sorbed phenanthrene from the soil column than did SDS solutions at the same concentration and flow rate because of the lower degree of sorption of the ACPU nanoparticles to the aquifer sand.
  1. Frster S, Antonietti M, Adv. Mater., 10, 195 (1988)
  2. Mayer ABR, Polym. Adv. Technol., 12, 96 (2001)
  3. Gangopadhyay R, Amitabha D, Chem. Mater., 12, 608 (2000)
  4. Caseri W, Macromol. Rapid Commun., 21, 705 (2000)
  5. Canter LW, Knox RC, Ground water pollution control, R. C. Knox Ed., pp. 349-372, Lewis Publishers Inc, Chelsea, Michigan (1986)
  6. Haley JL, Hanson B, Enfield C, Glass J, Ground Water Monitoring Rev., 11, 119 (1991)
  7. Harwell JH, Transport and remediation of subsurface contaminants. D. A. Sabatini and R. C. Know Eds., pp.124-132, ACS Symposium Series 491, Am Chemical Soc., Washington, D. C. (1992)
  8. Mackay DM, Cherry JA, Environ. Sci. Technol., 23, 630 (1989)
  9. McCarthy JF, Zachara JM, Environ. Sci. Technol., 23, 496 (1989)
  10. Yeom IT, Ghosh MM, Cox CD, Environ. Sci. Technol., 30, 1589 (1996)
  11. Noordman WH, Bruining JW, Wietzes P, Janssen DB, J. Contam. Hydrol., 44, 119 (2000)
  12. Kommalapati RR, Valsaraj Rt, Constant WD, Roy D, Water Res., 31, 2161 (1997)
  13. Edwards DA, Adeel Z, Luthy RG, Environ. Sci. Technol., 28, 1550 (1994)
  14. Lee JF, Liao PM, Kuo CC, Yang HT, Chiou CT, J. Colloid Interface Sci., 229(2), 445 (2000)
  15. Chu W, So WS, Water Res., 35, 761 (2001)
  16. Zhao D, Pignatello JJ, White JC, Braida W, Ferrandino F, Water Resour. Res., 37, 2205 (2001)
  17. Deshpande S, Wesson L, Wade D, Sabatini DA, Harwell JH, Water Res., 34, 1030 (2000)
  18. Pennell KD, Jin M, Abriola LM, Pope GA, J. Contam. Hydrol., 16, 35 (1994)
  19. West CC, Harwell JH, Environ. Sci. Technol., 26, 2324 (1992)
  20. Edwards DA, Luthy RG, Liu Z, Environ. Sci. Technol., 25, 127 (1991)
  21. Kim JY, Shin DH, Ihn KJ, Nam CW, Macromol. Chem. Phys., 203, 2454 (2003)
  22. Kim JY, Shin DH, Ihn KJ, Suh KD, J. Ind. Eng. Chem., 9(1), 37 (2003)
  23. Kim JY, Shim SB, J. Ind. Eng. Chem., 8(3), 225 (2002)
  24. Dohse DM, Lion LW, Environ. Sci. Technol., 28, 541 (1994)
  25. Kim JY, Cohen C, Shuler ML, Lion LW, Environ. Sci. Technol., 34, 4133 (2000)
  26. Kim JY, Chon YS, Yoo DJ, Suh KD, J. Polym. Sci. B: Polym. Phys., 38(16), 2081 (2000)
  27. Sabate J, Pujola M, Centelles E, Galan M, Llorens J, Colloids Surf. A: Physicochem. Eng. Asp., 150, 229 (1999)