화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.15, No.8, 844-849, December, 2004
벤젠의 hydroxylation 반응에 활성탄 지지체의 표면처리에 따른 반응성 영향 연구
The Effect of Surface Modified Activated Carbon as Supports in Catalytic Hydroxylation of Benzene
E-mail:
초록
벤젠에서 페놀로의 직접 합성 반응을 활성탄 지지체 혹은 활성탄 자체를 촉매로 이용하여 실험하였다. 또한 활성탄의 표면 작용기에 따른 본 반응의 반응 특성을 살펴보기 위하여 산처리와 질소 분위기 하에서 열처리를 실시하였다. 활성탄의 반응성을 향상시키기 위한 금속 담지촉매는 철을 5.0 wt% 함침시켜 제조하였으며 원료 활성탄과 전처리를 거친 활성탄에 각각 같은 양을 담지시켰는데 산처리되고 600 ℃, 질소분위기 하에서 열처리된 활성탄 지지체에 철이 담지된 촉매가 가장 우수한 반응 특성을 보였다. 이는 산처리와 열처리를 통하여 활성탄 표면에 붙어 있는 산소 그룹들이 반응에 중요한 인자임을 알 수 있었다. 이 작용기 분석은 TPD-MS를 이용하여 CO, CO2 생성량을 온도에 따라 얻어진 결과로부터 조사하였다.
The direct synthesis of benzene to phenol by hydroxylation with hydrogen peroxide was carried out over activated carbon and iron impregnated on activated carbon as catalysts. The effects of each surface functional group with activated carbon, which were modified by chemical and thermal treatments, were investigated. Among the catalysts the carbon catalyst modified by thermal treatment at 600 ℃ in nitrogen atmosphere, 5.0 wt% Fe impregnated one showed better yields of phenol compared to others. The catalysts were characterized by nitrogen adsorption, XRD, SEM and temperature programmed desorption (TPD). The TPD profiles were analyzed by a simple deconvolution method, allowing for the determination of the surface functional groups on the activated carbon. The results suggest that the nature and amount of the oxygen functional groups affects the catalytic activity, which might be related to the capacity of the carbon supports to hold the transition metal Fe on them.
  1. Yamanaka H, Hamada R, Nibuta H, Nishiyama S, Tsuruya S, J. Mol. Catal. A-Chem., 178, 89 (2002) 
  2. Miyake T, Hamada M, Sasaki Y, Oguri M, Appl. Catal. A: Gen., 131(1), 33 (1995) 
  3. Bhaumik A, Mukherjee P, Kumar R, J. Catal., 178(1), 101 (1998) 
  4. Kumar R, Mukherjee P, Bhaumik A, Catal. Today, 49(1-3), 185 (1999) 
  5. Lee CW, Lee WJ, Park YK, Park SE, Catal. Today, 61(1-4), 137 (2000) 
  6. He J, Xu WP, Evans DG, Duan X, Li CY, Microporous Mesoporous Mater., 44, 581 (2001) 
  7. Stockmann M, Konietzni F, Notheis JU, Voss J, Keune W, Maier WF, Appl. Catal. A: Gen., 208(1-2), 343 (2001) 
  8. Masumoto Y, Hamada R, Yokota K, Nishiyama S, Tsuruya S, J. Mol. Catal. A-Chem., 184, 215 (2002) 
  9. Rodrguez-Reinoso F, Carbon, 36, 159 (1998) 
  10. Szymanski GS, Rychlicki G, React. Kinet. Catal. Lett., 43, 475 (1991) 
  11. Pereira MFR, Orfao JJM, Figueiredo JL, Appl. Catal. A: Gen., 196(1), 43 (2000) 
  12. Lisovskii AE, Aharoni C, Catal. Rev.-Sci. Eng., 36(1), 25 (1994)
  13. Pereira MFR, Soares SF, Orfao JJM, Figueiredo JL, Carbon, 41, 811 (2003) 
  14. Pereira MFR, Orfao JJM, Figueiredo JL, Appl. Catal. A: Gen., 184(1), 153 (1999) 
  15. Ahumada E, Lizama H, Orellana F, Suarez C, Huidobro A, Sepulveda-Escribano, Rodriguez-Reinoso F, Carbon, 40, 2827 (2002) 
  16. Valente A, Palma C, Fonseca IM, Ramos AM, Vital J, Carbon, 41, 2793 (2003) 
  17. Figueiredo JL, Pereira MFR, Freitas MMA, Orfao JJM, Carbon, 37, 1379 (1999) 
  18. Szymanski GS, Karpinski Z, Biniak S, Swiatkowski A, Carbon, 40, 2627 (2002) 
  19. Castilla CM, Marin FC, Hodar FJM, Utrilla JR, Carbon, 36, 145 (1998) 
  20. Balkus KJ, Khanmamedova AK, Dixon KM, Bedioui F, Appl. Catal. A: Gen., 143(1), 159 (1996) 
  21. Thibault-Starzyk F, VanPuymbroeck M, Parton RF, Jacobs PA, J. Mol. Catal. A-Chem., 109, 75 (1996) 
  22. Aksoylu AE, Madalena M, Freitas A, pereira MFR, Figueiredo JL, Carbon, 39, 175 (2001) 
  23. Ohtani T, Nishiyama S, Tsuruya S, Masai M, J. Catal., 155(1), 158 (1995) 
  24. Miyake T, Hamada M, Sasaki Y, Oguri M, Appl. Catal. A: Gen., 131(1), 33 (1995) 
  25. Miyahara T, Kanzaki H, Hamada R, Kuroiwa S, Nishiyama S, Tsuruya S, J. Mol. Catal. A-Chem., 176, 141 (2001) 
  26. Kumar A, Kaspar J, Kumar A, J. Catal., 166(1), 108 (1997)