화학공학소재연구정보센터
Polymer(Korea), Vol.29, No.1, 32-35, January, 2005
오존처리에 따른 탄소나노튜브 강화 고밀도 폴리에틸렌 기지 복합재료의 PTC/NTC 특성
Effect of Ozone Treatment of Carbon Nanotube on PTC/NTC Behaviors of High-Density Polyethylene Matrix Composites
E-mail:
초록
탄소나노튜브를 오존처리한 후 이를 사용하여 탄소나노튜브/고밀도 폴리에틸렌 전도성 복합재료를 제조하였고, 오존처리된 탄산나노튜브가 positive temperature coefficient(PTC) 세기에 미치는 영향을 조사하였다. 원소분석(EA)과 FT-IR 분석 결과, 오존처리된 탄소나노튜브의 표면에는 O-H, C=O 그리고 C-O와 같은 산소함유 관능기가 증가하는 것을 확인할 수 있었다. 또한, 전도성 복합재료의 온도에 따른 저항성은 디지털 멀티메타를 이용하여 측정하였다. 복합재료의 저항성은 고밀도 폴리에틸렌의 결정 용융 온도에서 증가하였으며, 이는 복합재료의 매트릭스로 사용된 고밀도 폴리에틸렌의 열팽창성에 의한 전도성 네트워크의 파괴때문인 것으로 판단된다. 그리고 탄소나노튜브에 오존처리 시간이 증가할수록 탄소나노튜브/고밀도 폴리에틸렌 복합재료의 PTC 세기는 증가했고, 이는 오존처리에 의한 탄소나노튜브 표면에 산소함유 관능기는 PTC 소자의 최대 비저항 값을 증가시키기 때문인 것으로 판단된다.
In this paper, the carbon nanotubes (CNTs) were ozonized and the positive temperature coefficient (PTC) behaviors of CNTs-filled high-density polyethylene (HDPE) conductive composites were studied. The results of element analysis (EA) and FT-IR indicate that the oxygen-containing functional groups on the CNTs surfaces, such as O-H, C-O, and C=O groups, were increased with the ozonization. Electrical resistivities of the CNTs/HDPE composites were measured by using a digital multimeter. The resistivity of the composites was increased abruptly near the crystalline melting temperature of the HDPE used as matrix, which could be attributed to the destruction of conductive network by the thermal expansion of HDPE. And, the PTC intensity of the CNTs/HDPE composites was increased with the increase of the ozone treatment time. It was probably due to the growing of maximum volume resistivity of the composites induced by the increased oxygen-containing functional groups in the CNTs surfaces.
  1. Alcacer L, Conducting Polymer, Special Application, New York (1987)
  2. Burgmayer P, Murry RW, J. Am. Chem. Soc., 104, 6139 (1982) 
  3. Ivory DM, Miller GG, Sowa JM, Shachlette LW, Chance RR, Baughman RH, J. Chem. Phys., 71, 1506 (1979) 
  4. Sircar AK, Wells JL, Polym. Eng. Sci., 21, 809 (1981) 
  5. Park SJ, Kim HC, Kim HY, J. Colloid Interface Sci., 255(1), 145 (2002) 
  6. Chaung DS, Park SH, Lee HW, Choi JH, Cha SN, Kim JW, Jang JE, Min KW, Cho SH, Yoon MJ, Appl. Phys. Lett., 80, 4045 (2002) 
  7. Park SJ, Interfacial Forces and Fields: Theory and Applications, J. P. Hsu, Eitor, chap. 9, Marcel Dekker, New York (1999)
  8. Fu X, Lu W, Chung DDL, Carbon, 36, 1337 (1998) 
  9. Fujimoto K, Takebayashi Y, Inoue H, Ikada Y, J. Polym. Sci. A: Polym. Chem., 31, 1035 (1993) 
  10. Ko YG, Kim YH, Park KD, Lee JH, Lee WK, Park HD, Kim SH, Lee GS, Ahn DJ, Biomaterials, 22, 2115 (2001) 
  11. Mironi-Harpaz I, Narkis M, J. Polym. Sci. B: Polym. Phys., 39(12), 1415 (2001) 
  12. Yi X, Wu G, Pan Y, Polym. Int., 44, 117 (1997) 
  13. Feng JY, Chan CM, Polymer, 41(19), 7279 (2000) 
  14. Meyer J, Polym. Eng. Sci., 14, 706 (1973) 
  15. Narkis M, Ram A, Flashner F, J. Appl. Polym. Sci., 18, 649 (1978)
  16. Zhang MY, Jia WT, Chen XF, J. Appl. Polym. Sci., 62(5), 743 (1996) 
  17. Hernadi K, Siska A, Thien-Nga L, Forro L, Kiricsi I, Solid State Ion., 141, 203 (2001) 
  18. Yang G, Teng R, Xiao P, Polym. Compos., 18, 477 (1997)