Journal of the Korean Industrial and Engineering Chemistry, Vol.16, No.1, 34-38, February, 2005
유동층 액-액 추출기에서 액적의 크기 및 상승속도
Size and Rising Velocity of Liquid Drops in Liquid-Liquid Fluidized-Bed Extractors
E-mail:
초록
직경이 0.102 m이고 높이가 2.5 m인 유동층 액-액 추출기에서 액적의 크기와 분포 그리고 상승속도의 특성에 대하여 연구하였다. 분산상(0~0.04 m/s)과 연속상(0.02~0.14 m/s)의 유속변화, 그리고 유동고체 입자의 크기변화(1.0, 2.1, 3.1, 6.0 nm)에 따른 액적의 특성을 검토하였다. 액적의 흐름 거동은 추출기 내부에서 액적의 흐름 거동은 분산상과 연속상의 증가와 액적의 크기에 따라 상당히 영향을 받았다. 액적의 크기는 분산상의 속도가 증가함에 따라 증가하였지만, 유동입자의 크기가 증가함에 따라 따라서는 감소하는 경향을 나타내었다. 그러나 연속상의 유속이 증가함에 따른 액적의 크기는 국부적인 최대값을 나타낸 후 감소하는 경향을 나타내었다. 액적의 크기와 상승속도는 실험변수들과 잘 상관됨을 알 수 있었다.
Characteristics of size, rising velocity and distribution of liquid drops have been investigated in a immiscible liquidliquid fluidized-bed whose diameter was 0.102 m and 2.5 m in height. Effects of velocities of dispersed (0~0.04 m/s) and continuous (0.02~0.14 m/s) liquid phases and fluidized particle size (1, 2.1, 3 or 6 mm) on the liquid drop properties in the extractor have been determined. The resultant flow behavior of liquid drops became more complicated with increasing the velocity of dixpersed or continuous liquid phase. The resultant flow behavior of liquid complicated with increasing the velocity of dispersed or continuous liquid phase. The resultant flow behavior of liquid drops depended strongly upon the drop size and its distribution. The drop size increased with increasing dispersed phase velocity, but decreased with increasing particle size. However, the size of liquid drop exhibited a local maximum with increasing continuous liquid velocity. The size and rising velocity of liquid drops have been well correlated in terms of operating parameters.
- Dakshinamurty P, Veerabhadrarao K, Venkatarao AB, I&EC Process Des. Dev., 18, 638 (1979)
- Dakshinamurty P, Subrahmanyam V, Prasadarao RV, Vijayasaradhi D, I & EC Process Des. Dev., 23, 132 (1984)
- Kim SD, Lee MJ, Han JH, Can. J. Chem. Eng., 67, 276 (1989)
- Dehkordi AM, Chem. Eng. J., 87(2), 227 (2002)
- Ghosh B, Mukherjee DC, Bhattacharjee S, Chaudhuri B, Can. J. Chem. Eng., 79(1), 148 (2001)
- Song PS, Kim HT, Kang Y, Kim SJ, Kim SD, J. Korean Ind. Eng. Chem., 14(6), 807 (2003)
- Song PS, Kim HT, Son SM, Kang Y, Kim SJ, Kim SD, J. Korean Ind. Eng. Chem., 14(7), 903 (2003)
- Kim SD, Kang Y, Advances in Engineering Fluid Mechanics Series, N.P. Cheremisinoff ed., Gulf Pub. Co., 845 (1996)
- Dehkordi AM, AIChE J., 48(10), 2230 (2002)
- Kang Y, Kim JS, Woo KJ, Nam CH, Kim SH, Kim SD, HWAHAK KONGHAK, 36(2), 275 (1998)
- Kim SD, Kim JS, Nam CH, Kim SH, Kang Y, Chem. Eng. Sci., 54(21), 5173 (1999)
- Shin KS, Lee CG, Kang SH, Kang Y, Kim SD, Kim SJ, J. Korean Ind. Eng. Chem., 14(7), 896 (2003)
- van Woezik BAA, Westerterp KR, Chem. Eng. Process., 39(4), 299 (2000)
- Kim SD, Kim DY, Han JH, Can. J. Chem. Eng., 72(2), 222 (1994)
- Woo KJ, Kim JS, Kang Y, Kim SD, Chem. Eng. Technol., 24(8), 829 (2001)
- Matsuura A, Fan LS, AIChE J., 30, 894 (1984)
- Fan LS, Butterworths, Stonehair, MS (1989)
- Golding JA, Korean DW, Hydrometallurgy, 33, 227 (1993)