화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.16, No.1, 45-51, February, 2005
액상반응에 의한 K+-β"-Al2O3 합성시 분산첨가제 에탄올과 pH가 입도 및 상형성에 미치는 영향
Effect of Ethanol as a Dispersant and pH on the Particle Size and Phase Formation in the Synthesis of K+-β"-Al2O3 by Solution State Reaction
E-mail:
초록
Aluminum nitrate 수용액을 원료로 사용하여 K2O-Li2O-Al2O3 3성분계로부터 K+-β-Al2O3를 합성하였다. 순수한 K+-β"-Al2O3의 합성을 위하여 원료물질은 0.84K20ㆍ0.082Li2Oㆍ5.2Al2O3의 조성으로 액상상태에서 혼합되었다. 입자크기를 최소화하고 순수한 K+-β"-Al2O3를 합성하는데 있어서 분산첨가제와 용액의 pH의 영향을 조사하였다. 분산첨가제로써 에탄올을 0.0~4.0 M 첨가하였고 용액의 pH는 NH4OH 수용액과 HNO3를 이용하여 조절하였다. 시료는 pH 1.0에서 7.5까지 0.5 간격으로 수집하였다. 각 시료들은 1200 ℃에서 2 h 동안 하소한 후 XRD와 PSA 분석을 하였다. 용액의 pH는 입자크기와 상형성에 모두 중요한 영향을 미친 반면, 에탄올의 첨가는 입자크기에만 영향을 주었다. pH 조절에 HNO3를 사용하였을 경우, HNO3를 사용하지 않았을 때 보다 순수한 K+-β"-Al2O3 상을 합성하는데 유리함을 알 수 있었다.
K+-β"-Al2O3 in the K2O-Li2O-Al2O3 ternary system was synthesized using aluminum nitrate solution as a starting material. For the synthesis of pure K+-β-Al2O3, raw materials with chemical composition of 0.84K2Oㆍ0.082Li2Oㆍ5.2Al2O3 were mixed in solution state. The effects of dispersant and solution-pH were investigated in minimizing the particle size and on the synthesis of pure K+-β"-Al2O3. Ethanol was used for a dispersant, and NH4OH solution and nitric acid were added for pH adjustment. The solution pH was increased from 1.0 to 7.5 by 0.5 increments. Each sample was calcined at 1200 ℃ for 2 h and characterized with X-ray diffraction and particle size analyzer. The pH of solution significantly effected both particle size and phase formation, while the addition of ethanol only effected particle size. The synthesis of pure K+-β"-Al2O3 was favored by addition of nitric acid (for pH control).
  1. Farrington GC, Briant JL, Proceeding of the International Conference, 395, Lake Geneva, Wisconsin (1979)
  2. Schaefer GW, Weppner W, Solid State Ion., 53, 559 (1992) 
  3. Schafer GW, Kim HJ, Aldinger F, Solid State Ion., 77, 234 (1995)
  4. Chen Kungang, Ceramic Powders, ed. P. Vincenzini, 587 (1983)
  5. Heavens SN, J. Mater. Sci., 19, 2233 (1984) 
  6. Hasselman DPH, Youngblood GE, J. Am. Ceram. Soc., 61, 49 (1978) 
  7. Jatkar AD, Culter IB, Gordon RS, Ceramic Microstructure, 76, 414 (1977)
  8. Duncan JH, Barrow P, Brown PV, Electroceramics, 231 (1988)
  9. Youngblood GE, Virkar AV, Cannon WR, Gordon RS, Am. Ceram. Soc. Bull., 56, 206 (1977)
  10. WynnJones I, Miles LJ, Proc. Brit. Ceram. Soc., 99, 161 (1971)
  11. Jatkar AD, Culter IB, Gordon RS, Ceramic Microstructure, 76, 414 (1977)
  12. Krell A, Ma H, Nanostruct. Mater., 11, 1141 (1999) 
  13. Kim WS, Lim SK, J. Korean Ind. Eng. Chem., 12(3), 312 (2001)
  14. Pacewska B, Keshr M, Thermochim. Acta, 385(1-2), 73 (2002) 
  15. Jayaraman V, Periaswami G, Kutty TRN, J. Mater. Chem., 8, 1087 (1998) 
  16. Morgado E, Lam YL, Nazar LF, J. Colloid Interface Sci., 188(2), 257 (1997) 
  17. Jackobson CA, Encyclopedia of Chemical Reactions, 5, 175 (1953)
  18. Pathak LC, Singh TB, Das S, Verma AK, Ramachandrarao P, Mater. Lett., 3815 (2002)
  19. Willstatter R, Kraut H, Erbacher O, Ber, 588, 2448 (1925)