화학공학소재연구정보센터
Polymer(Korea), Vol.29, No.2, 122-126, March, 2005
MCM-41 촉매 합성법이 선형 저밀도 폴리에틸렌의 촉매 열분해 동역학에 미치는 영향
Effect of MCM-41 Preparation Methods on the Kinetics of Catalytic Pyrolysis of Linear Low Density Polyethylene
E-mail:
초록
Al-MCM-41의 제조방법이 선형 저밀도 폴리에틸렌(LLDPE)의 촉매 분해 활성에 어떠한 영향을 주는지 조사하였다. 이를 위해 Al-MCM-41은 직접 합성법(Al-MCM-41-D)과 후처리법(Al-MCM-41-P)의 두 가지 방법으로 제조 되었으며, XRD, BET, NH3 TPD, 27Al MAS NMR 등을 이용하여 이들 촉매 특성을 규명하였다. TGA 동역학 방법을 사용하여 Al-MCM-41-D와 Al-MCM-41-P의 LLDPE 촉매 분해 활성화 에너지를 구한 결과 각각 197.54, 174.26 kJ/mol로 나타났다. 이처럼 Al-MCM-41-P가 Al-MCM-41-D보다 촉매 활성이 높은 이유는 접근 가능한 산점수가 훨씬 많고 상대적으로 기공 크기도 작은 것에 기인한 것으로 여겨진다.
The effect of Al-MCM-41 preparation methods on the catalytic degradation of linear low density polyethylene (LLDPE) was investigated. Al-MCM-41 catalysts were synthesized by direct method (Al-MCM-41-D) and post treatment method (Al-MCM-41-P) and their characteristics were elucidated by XRD, BET, NH3, TPD, 27Al MAS NMR. TGA kinetic analysis showed that the catalytic activation energies of Al-MCM-41-D and Al-MCM-41-P were 197.54 and 174.26 kJ/mol, respectively. The higher catalytic activity of Al-MCM-41-P would be attributed to its smaller pore size as well as higher number of acid sites that are accessible.
  1. Bagri R, Williams PT, J. Anal. Appl. Pyrolysis, 63, 29 (2002) 
  2. Kim HT, Song BS, Park CH, Park YH, "The study on the production state and recycling technology of waste mixed plastics", Korea Environments and REcycling Corporation (1996)
  3. Shin DH, Yoon WL, Choi IS, Polym. Sci. Technol., 13(3), 322 (2002)
  4. Park YK, Kim JS, Choi J, Jeon JK, Kim S, Kim SS, Kim JM, Yoo KS, Kor. J. Kor. Soc. Waste Manage., 20, 566 (2003)
  5. Yu HJ, Lee BH, Kim DS, Polym.(Korea), 27(1), 84 (2003)
  6. Williams PT, Chishti HM, J. Anal. Appl. Pyrolysis, 55, 217 (2000) 
  7. Mordi RC, Fields R, Dwyer J, J. Anal. Appl. Pyrolysis, 29, 45 (1994) 
  8. Manos G, Garforth A, Dwyer J, Ind. Eng. Chem. Res., 39(5), 1198 (2000) 
  9. Park JW, Kim JH, Seo G, Polym. Degrad. Stabil., 76, 495 (2002) 
  10. Bagri R, Williams PT, J. Anal. Appl. Pyrolysis, 63, 29 (2002) 
  11. Takuma K, Uemichi Y, Ayame A, Appl. Catal. A: Gen., 192(2), 273 (2000) 
  12. You YS, Shim JS, Kim JH, Seo G, Catal. Lett., 59(2-4), 221 (1999)
  13. You YS, Kim JH, Seo G, Polym. Degrad. Stabil., 72, 329 (2001) 
  14. Park DW, Hwang EY, Kim JR, Choi JK, Kim YA, Woo HC, Polym. Degrad. Stabil., 65, 193 (1999) 
  15. Kim JM, Kwak JH, Jun S, Ryoo R, J. Phys. Chem., 99(45), 16742 (1995) 
  16. Ryoo R, Jun S, Kim JM, Kim MJ, Chem. Commun., 22, 2255 (1997)
  17. Seddegi ZS, Budrthumal U, Al-Arfaj AA, Al-Amer AM, Barri SAI, Appl. Catal. A: Gen., 225(1-2), 167 (2002) 
  18. Aguado J, Sotelo JL, Serrano DP, Calles JA, Escola JM, Energy Fuels, 11(6), 1225 (1997) 
  19. vanGrieken R, Serrano DP, Aguado J, Garca R, Rojo C, J. Anal. Appl. Pyrolysis, 58, 127 (2001) 
  20. Hesse ND, Lin R, Bonnet E, Cooper J, White RL, J. Appl. Polym. Sci., 82(12), 3118 (2001) 
  21. Isoda T, Nakahara T, Kusakabe K, Morooka S, Energy Fuels, 112, 1161 (1998) 
  22. Jalil PA, J. Anal. Appl. Pyrolysis, 65, 185 (2002) 
  23. Serrano DP, Aguado J, Escola JM, Ind. Eng. Chem. Res., 39(5), 1177 (2000) 
  24. Flynn JH, Wall LA, J. Research National Bureau Standards-A. Physics and Chemistry, 70A, 487 (1966)
  25. Ryoo R, Kim JM, J. Chem. Soc. Chem. Commun., 711 (1995) 
  26. Park YK, Kim JS, Jeon JK, Kim JM, Submitted to Polym. Degrad. Stab.