Combustion and Flame, Vol.135, No.4, 503-523, 2003
Generation of PDFS for flame curvature and for flame stretch rate in premixed turbulent combustion
Experimentally derived pdfs of turbulent, premixed, flame curvatures from a variety of sources, for a wide range of conditions are surveyed and a suitable expression sought to generalize these. This proves to be one based on the Damkohler number, Da. This is tantamount to normalizing the curvature by multiplying it by the Taylor scale of turbulence. It enables the distribution of flame curvature when normalized by the laminar flame thickness, to be expressed in terms of the Karlovitz stretch factor, K, and the turbulent Reynolds number, R, The value of the pdf at zero curvature is linearly related to Da(1/2). The pdf expressions of Yeung et al. [3] obtained from numerical simulations are used for the strain rate distribution and, on the assumption that these and that for flame curvature are statistically independent, values of flame stretch rate pdfs are generated numerically. It is necessary to define an appropriate surface to define the burning velocity, flame stretch rate, and appropriate Markstein numbers. Two surfaces are considered and employed in the computations, one located at the start of the preheat zone, the other at the start of the reaction zone. The latter seems more rational and gives the better generalisation of the pdfs of flame stretch rate. An assumed linearity of laminar burning velocity with flame stretch rate, extending over both positive and negative stretch rates, enables flame stretch rate pdfs to be generated. It is concluded that negative values of burning velocity are unlikely and that burning velocities should tend to zero rather than attain negative values. This modifies the derivation of flame stretch rate pdfs. These depend on the Markstein number, Karlovitz stretch factor and turbulent Reynolds number. Computations suggest that, for values of K above 0.1 and of R-1 above 100, the pdf of stretch rate is similar to that of strain rate. At very low values of K and negative values of Markstein number, pronounced flamelet instability might be anticipated. (C) 2003 The Combustion Institute. All rights reserved.