Biotechnology Letters, Vol.26, No.12, 971-974, 2004
Self-rotation of red blood cells in optical tweezers: prospects for high throughput malaria diagnosis
A simple and sensitive approach for detection of malarial parasite in blood samples is demonstrated. The approach exploits our finding that, in hypertonic buffer, a normal red blood cell (RBC) rotates by itself when trapped by an optical tweezers. The rotational speed increases linearly at lower trap-beam powers and more rapidly at higher powers. In contrast, under the same experimental conditions, RBC having a malarial parasite does not rotate. The rotational speeds of other RBCs from malaria-infected sample are of an order of magnitude less than that for normal RBC and also increase much more slowly with an increase in trap beam power than that for normal RBC. The difference in rotational speeds could be exploited for the diagnosis of malaria.
Keywords:malaria diagnosis;optical tweezers