Journal of the American Chemical Society, Vol.126, No.31, 9601-9610, 2004
2,2,5,5-tetramethylpyrrolidin-3-one-1-sulfinyl group for 5'-hydroxyl protection of deoxyribonucleoside phosphoramidites in the solid-phase preparation of DNA oligonucleotides
Several nitrogen-sulfur reagents have been investigated as potential 5'-hydroxyl protecting groups for deoxyribonucleoside phosphoramidites to improve the synthesis of oligonucleotides on glass microarrays. Out of the nitrogen-sulfur-based protecting groups so far investigated, the 2,2,5,5-tetramethylpyrrolidin-3-one-1-sulfinyl group exhibited near optimal properties for 5'-hydroxyl protection by virtue of the mildness of its deprotection conditions. Specifically, the iterative cleavage of a terminal 5'-sulfamidite group in the synthesis of 5'-d(ATCCGTAGCCAAGGTCATGT) on controlled-pore glass is efficiently accomplished by treatment with iodine in the presence of an acidic salt. Hydrolysis of the oligonucleotide to its 2'-deoxyribonucleosides upon exposure to snake venom phosphodiesterase and bacterial alkaline phosphatase did not reveal the formation of any nucleobase adducts or other modifications. These findings indicate that the 2,2,5,5-tetramethylpyrrolidin-3-one-1-sulfinyl group for 5'-hydroxyl protection of phosphoramidites, such as 10a-d, may lead to the production of oligonucleotide microarrays exhibiting enhanced specificity and sensitivity in the detection of nucleic acid targets.