Langmuir, Vol.20, No.19, 8352-8356, 2004
Ultrasound-assisted polyol method for the preparation of SBA-15-supported ruthenium nanoparticles and the study of their catalytic activity on the partial oxidation of methane
Metallic Ru nanoparticles have been successfully produced and incorporated into the pores of SBA-15 in situ employing a simple ultrasound-assisted polyol method. The product has been confirmed by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy, where ultrasound provides both the energy for the reduction of the Ru(III) ion and the driving force for the loading of the RuO nanoparticles into the SBA-15 pores. An ultrasound-assisted insertion mechanism has been proposed based on the microjets and shake-wave effect of the collapsed bubbles. The catalytic properties of the SBA-15-supported Ru nanoparticles have been tested by the partial oxidization of methane and show very high activity and high CO selectivity.