Polymer, Vol.45, No.17, 5979-5984, 2004
Exploring long-range connectivity of the hard segment phase in model tri-segment oligomeric polyurethanes via lithium chloride
The influence of the extent of hydrogen bonding in mediating the long-range connectivity and percolation of the hard segment phase in model tri-segment oligomeric polyurethanes (PU) was explored by using LiCl as a molecular probe. A 22 wt% hard segment containing model PU plaque based on a mono-functional oligomeric polyether, 80:20 2,4:2,6 isomeric mixture of toluene diisocyanate, and water as a chain extender was employed. Samples cast from 20 wt% solutions in dimethyl acetarnide were utilized. The tapping-mode atomic force microscopy (AFM) phase image of the solution cast film sample (soft segment T-g - 63 degreesC) without LiCl exhibited the presence of long interconnected ribbon-like hard domains. The long-range connectivity and percolation of the hard phase that arose during plaque formation gave rise to a brittle rigid solid. A systematic break-up of the hard domains was also observed by AFM when the concentration of LiCl was increased from 0.1 to 1.5 wt%. DSC analysis indicated that the samples were able, however, to maintain a microphase separated morphology even at the highest LiCl concentration utilized in the study. FT-IR data confirmed that LiCl interacts with the hard domains of the model PU samples by disrupting the hydrogen bonding capability of the urea hard segments. A systematic softening of the samples was observed with increasing LiCl content as confirmed by thermomechanical analysis. Thus, this study indicates that hydrogen bonding plays an important role in assisting the hard segments in PU to develop long-range connectivity and percolation of this phase through the soft matrix. (C) 2004 Elsevier Ltd. All rights reserved.