Polymer, Vol.45, No.21, 7061-7069, 2004
Crystallization and phase separation kinetics in blends of linear low-density polyethylene copolymers
We have systematically studied the crystallization and liquid-liquid phase separation (LLPS) kinetics in statistical copolymer blends of poly(ethylene-co-hexene) (PEH) and poly(ethylene-co-butene) (PEB) using primarily optical microscopy. The PEH/PEB blends exhibit upper critical solution temperature (UCST) in the melt and crystallization temperature below the UCST. The time evolution of the characteristic morphology for both crystallization and LLPS is recorded for blends at various compositions and following a quench from initial homogenous melts at high temperature to various lower temperatures. The crystallization kinetics is measured as the linear growth rate of the super structural crystals, whereas the LLPS kinetics is measured as the linear growth rate of the characteristic length of the late-stage spinodal decomposition. The composition dependence crystallization kinetics, G, shows very different characteristics at low and high isothermal crystallization temperature. Below 116 degreesC, G decreases with increasing PEB content in the blend, implying primarily the composition effect on materials transport; whereas at above 116 degreesC, G shows a minimum at about the critical composition for LLPS, implying the influence of the LLPS. On the other hand, LLPS kinetics at 130 degreesC is relatively invariant at different compositions in the two-phase regime. The length scale at which domains are kinetically pinned, however, depends strongly on the composition. In a blend near critical composition, a kinetics crossover is shown to separate the crystallization dominant and phase separation dominant morphology as isothermal temperature increases. (C) 2004 Elsevier Ltd. All rights reserved.