Polymer, Vol.45, No.21, 7167-7171, 2004
Gas transport properties of 6FDA-TAPOB hyperbranched polyimide membrane
Physical and gas transport properties of the hyperbranched polyimide prepared from a triamine, 1,3,5-tris(4-aminophenoxy)benzene (TAPOB), and a dianhydride, 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), were investigated and compared with those of linear-type polyimides with similar chemical structures prepared from diamines, 1,4-bis(4-aminophenoxy)benzene (TPEQ) or 1,3-bis(4-aminophenoxy)benzene (TPER), and 6FDA. 6FDA-TAPOB hyperbranched polyimide exhibited a good thermal stability as well as linear-type analogues. Fractional free volume (FFV) value of 6FDA-TAPOB was higher than those of the linear-type analogues, indicating looser packing of molecular chains attributed to the characteristic hyperbranched structure. It was found that increased resistance to the segmental mobility decreases the gas diffusivity of 6FDA-TAPOB, in spite of the higher FFV value. However, 6FDA-TAPOB exhibited considerably high gas solubility, resulting in high gas permeability. It was suggested that low segmental mobility and unique size and distribution of free volume holes arising from the characteristic hyperbranched structure of 6FDA-TAPOB provide effective O-2/N-2 selectivity. It is concluded that the 6FDA-TAPOB hyperbranched polyimide has relatively high permeability and O2N2 selectivity, and is expected to apply to a high-performance gas separation membrane. (C) 2004 Elsevier Ltd. All rights reserved.