화학공학소재연구정보센터
Applied Catalysis A: General, Vol.275, No.1-2, 49-54, 2004
Deactivation and regeneration of ZnO and TiO2 nanoparticles in the gas phase photocatalytic oxidation of n-C7H16 or SO2
In this paper. we examined the lifetimes of made-in-home ZnO and TiO2 nanoparticles in the gas phase photocatalytic oxidation of n-C7H16 or SO2, and especially investigated the deactivation mechanism by utilizing surface photovoltage spectrum (SPS) and X-Ray photoelectron spectroscopy (XPS) testing techniques and by considering semiconductor chemical properties. The results showed that ZnO could almost be deactivated in the gas phase photocatalytic oxidation of n-C7H16, while TiO2 could keep most of its activity. In the gas phase photocatalytic oxidation of n-C7H16 or SO2, ZnO and TiO2 both could almost be deactivated. The deactivation mainly resulted from semiconductor surface conduction type change from N-type before the photocatalytic reaction to P-type after the deactivation because of the adsorption of the oxidation products such as H2O, CO2 and SO3 on the semiconductor photocatalyst surface. In addition, the activity of the deactivated photocatalyst could be regenerated to a nearly full extent by washing and drying. (C) 2004 Elsevier B.V. All rights reserved.