Catalysis Today, Vol.96, No.4, 187-194, 2004
Surface characteristics and activity in selective oxidation of o-xylene of supported V2O5 catalysts prepared by standard impregnation and atomic layer deposition
Alumina-, silica-, and titania-supported vanadium oxide systems with V2O5 loadings ranging from 3 to 12 wt.%, corresponding to 0.02-0.09 V/(Al,Si,Ti) atomic ratios, were prepared by atomic layer deposition (ALD) and compared with the corresponding impregnated catalysts. The surface acidic properties of the supports and catalysts were investigated using ammonia adsorption microcalorimetry to determine the number and strength of the surface acid sites. Deposition of V2O5 on alumina and titania supports gave rise to catalysts with lower amounts of acid sites than the respective supports, while for the samples prepared on silica, an increase of the number of acid sites was observed after V2O5 deposition. As a common trend, the surface acid strength was greater for the ALD catalysts than for the impregnated ones, suggesting a stronger interaction of the VO species with the support centers, which act as electron attractor centers creating Lewis-like vanadium species. Redox cycles were performed, involving temperature programmed reduction (TPR) analyses separated by an oxidation treatment (TPO). The results evidenced the good reversibility of the redox behavior of the vanadium centers in every case, while significant differences were observed when comparing the temperatures of reduction (T-max). Lower T-max values were observed for the better dispersed vanadia catalysts. After reduction, the V centers had a final formal average oxidation state corresponding to +3 or less (+2.5 to +2). The reactivity of the vanadia systems was examined by measuring their performance for the oxidation of o-xylene to phthalic anhydride. Activity tests indicated the superior selectivity of the V2O5 systems based on the more acidic supports (Al2O3 and TiO2). The nature of the support governed the activity, and the more concentrated catalysts gave rise to improved selectivity to phthalic anhydride. (C) 2004 Elsevier B.V. All rights reserved.
Keywords:vanadium/alumina/silica/titania catalysts;o-xylene partial oxidation;selective catalytic oxidation;adsorption calorimetry;acidity;redox properties