IEEE Transactions on Automatic Control, Vol.49, No.8, 1370-1375, 2004
Combined parametric-nonparametric identification of Hammerstein systems
A novel, parametric-nonparametric, methodology for Hammerstein system identification is proposed. Assuming random input and correlated output noise, the parameters of a nonlinear static characteristic and finite impulse-response system dynamics are estimated separately, each in two stages. First, the inner signal is recovered by a nonparametric regression function estimation method (Stage 1) and then system parameters are solved independently by the least squares (Stage 2). Convergence properties of the scheme are established and rates of convergence are given.