Inorganic Chemistry, Vol.43, No.18, 5543-5549, 2004
Synthesis and photochemical properties of a novel iron-sulfur-nitrosyl cluster derivatized with the pendant chromophore protoporphyrin IX
The novel Roussin red-salt ester (PPIX-RSE) with a pendant porphyrin chromophore was prepared and investigated as a precursor for the photochemical generation of nitric oxide, PPIX-RSE has the general formula Fe-2(NO)(4){(muS,mu-S')P} (where (S,S')P is the bis(2-thiolatoethyl) diester of protoporphyrin IX. The photoexcitation of PPIX-RSE with 436- or 546-nm light in an aerated chloroform solution led to the photodecomposition of the cluster with the respective quantum yields (5.2 +/- 0.7) x 10(-4) and (2.5 +/- 0.5 x 10(-4)) and the concomitant release of NO. PPIX-RSE is a significantly more effective NO generator at longer wavelength excitation than are other Fe-2(mu-SR)(2)(NO)(4) esters for which R is a simple alkyl group such as CH3CH2- because of the much higher absorptivity of the pendant PPIX chromophore at these wavelengths and a modestly higher quantum yield. Fluorescence intensity and lifetime data indicate that the photoexcited porphyrin of PPIX-RSE is largely quenched by the energy transfer to the Fe2S2(NO)(4) cluster's core. However, a small fraction of this emission is not quenched, and it is proposed that PPIX-RSE may exist in solution as two conformers.