화학공학소재연구정보센터
Inorganic Chemistry, Vol.43, No.21, 6699-6706, 2004
New tetranuclear Cu(II) complexes: Synthesis, structure, and magnetic properties
The synthesis, structure, and magnetic properties of two new tetranuclear Cu(II) complexes containing N,N,N',N'-tetraethylpyridine-2,6-dithiocarboxamide (S-dept) of formula [Cu2Cl2(mu-S-dept)(2)][Cu2Cl4(mu-Cl)(2)] (1) and [Cu-2(mu-Cl)(2)(S-dept)(2)][CuCl3(EtOH)](2) (2) are reported. Their X-ray crystal structures reveal that the complexes are composed of anionic and cationic dimers, that in both cases contain the metal centers which interact via Coulombic and/or hydrogen bonding interactions. In both cases, the Cu centers in the anionic moieties adopt a slightly distorted tetrahedral geometry whereas for the cationic moieties they adopt a square-pyramidal type of geometry. Magnetic susceptibility data show that compounds 1 and 2 present an overall antiferromagnetic behavior arising from the contribution of both anionic and cationic moieties. For 1, the best fit obtained gave J(1) = -2.62 +/- 0.19 cm(-1), J(2) = -19.54 +/- 0.47 cm(-1), and g(2) = 2.164 +/- 0.004 cm(-1) (R = 8.28 x 10(-5)) whereas for 2 it gave J(1) = 4.48 +/- 2.73 cm(-1), g(1) = 2.20 +/- 0.03, J(2) = -11.26 +/- 2.01 cm(-1), and g(2) = 2.10 +/- 0.03 (R = 1.15 x 10(-4)). The nature of the superexchange pathways in 1 and 2 is discussed on the basis of structural, magnetic, and molecular orbital considerations. Theoretical calculations are performed at the extended Huckel level in order to obtain their molecular orbitals and energies using their crystallographic data.