Journal of Chemical Physics, Vol.121, No.8, 3478-3485, 2004
Theoretical study on isomeric stabilities of C2H2Si and its ionization potentials and electron affinities
The geometric structures and isomeric stabilities of various stationary points in C2H2Si neutral and its cation and anion are investigated at the coupled-cluster singles, doubles (triples) [CCSD(T)] level of theory. For the geometrical survey, the basis sets used are of the Dunning's correlation consistent basis sets of triple-zeta quality (cc-pVTZ) for the neutral and cation. For the anions, the cc-pVTZ basis sets with diffuse functions (aug-cc-pVTZ) are used. The final energies are calculated by the use of the CCSD(T) level of theory with the aug-cc-pVTZ basis set at their optimized geometries. To lower lying neutrals and cations, the Dunning's correlation consistent basis sets of quadruple-zeta quality (cc-pVQZ) are also applied. Both the global minima of the C2H2Si neutral and cation, N-1 (C-2v:(1)A(1)) and C-1 (C-2v:B-2(2)), respectively, are silacyclopropenylidene conformers, having a CCSi ring with a C= double bond. No competitive stable isomers exist in the present C2H2Si neutral. In the cation, however, the second lowest lying isomer C-2 lies 10.8 kJ/mol above the most stable C-1. The vertical and adiabatic ionization potentials from the lowest lying neutral N-1 are 9.83 and 8.97 eV, respectively, at the CCSD(T)/cc-pVQZ level of theory. The electron addition to the N-1 does not result in the anion with positive (real) electron affinities. On the other hand, the electron addition to the N-2 isomer produces the global minimum anion A-1 (C-2v:B-2(1)) with the positive electron affinities of 1.13 eV. The second lowest lying anion isomer A-2 with silylenylacetylene conformer, produced from an electron addition to the N-3 neutral, very well competes with the A-1 after the zero-point vibrational energy corrections. The energy difference between the two lowest lying isomers of the neutral and its anion, N-1 and A-1, is only 0.39 eV. (C) 2004 American Institute of Physics.