화학공학소재연구정보센터
Journal of Chemical Physics, Vol.121, No.9, 4292-4296, 2004
Molecular dynamics simulation of optically trapped colloidal particles at an oil-water interface
Using molecular dynamics simulations, we calculate the net force on a colloidal particle trapped by an optical tweezer and confined within a particle monolayer which is in motion relative to the trapped particle. The calculations are compared with recent experimental data on polystyrene particles located at an oil-water interface. Good agreement between theory and experiment is obtained over the investigated range of lattice constants for an interaction mechanism between the polystyrene particles which is dominated by an effective dipole-dipole potential. The assumed interaction mechanism is consistent with the formation of surface charge dipoles at the particle-oil interface due to the dissociaton of the hydrophilic sulfate headgroups at the surface of the polystyrene particles. A possible physical mechanism for the formation of the surface charge dipoles, involving a diffuse cloud of fully hydrated counterions, is described, and the fraction of surface groups contributing to the formation of surface charge dipoles is estimated to be of the order of 10(-1) for the present system. (C) 2004 American Institute of Physics.