Journal of Chemical Physics, Vol.121, No.13, 6175-6185, 2004
Complex autocorrelation function and energy spectrum by classical trajectory calculations
A quasiclassical method which enables evaluation of complex autocorrelation function from classical trajectory calculations is proposed. The method is applied for two highly excited nonlinearly coupled harmonic oscillators in regimes prevailed either by regular or chaotic classical motions. A good agreement of classical and quantum autocorrelation functions is found within short (Ehrnfest) time limit. Fourier transforms of the autocorrelation functions provide moderate resolved energy spectra, where classical and quantum results nearly coincide. The actual energy levels are obtained from approximate short-time autocorrelation functions with the help of filter diagonalization. This study is a follow up to our previous work [P. Zdanska and N. Moiseyev, J. Chem. Phys. 115, 10608 (2001)], where the complex autocorrelation has been obtained up to overall phase factors of recurrences. (C) 2004 American Institute of Physics.