Journal of Chemical Physics, Vol.121, No.21, 10419-10425, 2004
Accurate intermolecular ground state potential of the Ar-N-2 van der Waals complex
After carrying out a systematic basis set convergence study, we evaluate several ground state potential energy surfaces of the Ar-N-2 van der Waals complex at the coupled cluster singles and doubles model including connected triples corrections. We use the aug-cc-pVXZ (X=5,Q,D) and the daug-cc-pVQZ basis sets augmented with a set of 3s3p2d1f1g (denoted 33211) and 3s3p2d2f1g (denoted 33221) midbond functions, respectively. aug-cc-pVTZ-33211 results were available in the literature. The aug-cc-pV5Z-33211 (daug-cc-pVQZ-33221) surface is characterized by a T-shaped minimum at R-e=3.709 (3.701) Angstrom and of 99.01 (102.50) cm-1, and a linear saddle point at 4.260 (4.257) Angstrom and D-e=75.28 (79.73) cm(-1). These results are compared with the values provided by the semiempirical potentials available, and those of previous theoretical studies. The basis set convergence of the intermolecular potentials is also analyzed. From the potentials the rovibronic spectroscopic properties are determined. We study the basis set convergence of the rotational frequencies. The binding parameters that characterized the aug-cc-pVTZ-33211 surface are reasonable, but the surface is not good enough to evaluate the microwave spectra. The aug-cc-pVQZ-33211 basis set results considerably improve the triple zeta and are close to the aug-cc-pV5Z-33211. Considering the small differences between the quadruple and the quintuple zeta surfaces, the latter results can be expected to be close to convergence. At this level the differences with respect to the accurate experimental frequencies are in the order of 0.7%. In the case of the daug-cc-pVXZ-33211,33221 (X=5,Q,T,D) series, the convergence of the interaction energies with respect to basis set improvement is not so smooth. The errors in the frequencies obtained with the daug-cc-pVQZ-33221 basis set with respect to experiment are in the order of 0.4%. (C) 2004 American Institute of Physics.