화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.279, No.1, 235-243, 2004
Catastrophic phase inversion in region II of an ionomeric polymer-water system
Previous work has identified distinct regions, on a phase inversion map, for dispersions of polyurethane ionomer (PUI) and water. In this study, events that occur, before, during, and after catastrophic phase inversion (provoked by adding water to polyurethane ionomer (PUI) in the RII regions of the phase inversion map) have been studied in order to characterise the inversion mechanism. Before phase inversion, initial water addition leads to the hydration of ionic groups and eventually water drops start to form in the hydrophobic portions of the polymer matrix. At the phase inversion point, the PUI-water interface restructures and the ionomer disintegrates into a dispersion of spherical particles enclosed by a continuous aqueous phase. It is suggested that pseudo-drop structures are formed simultaneously during the production of the small polymer-in-water drops. After phase inversion, water addition dilutes the emulsion and destroys the apparent ionic-centre-rich environment surrounding any isolated ionic groups on a particle surface. The larger water-in-polymer drops are likely to have participated in the phase inversion and the smaller water drops form the primary water drops in the Multiple emulsions. The resultant emulsions are stable over a period of a few months but very few multiple drops remain after 1 1/4 years. (C) 2004 Elsevier Inc. All rights reserved.