Journal of Colloid and Interface Science, Vol.280, No.1, 256-263, 2004
Electrophoresis of a sphere at an arbitrary position in a spherical cavity filled with Carreau fluid
Boundary effects on the electrophoretic behavior of a charged entity are of both fundamental and practical significance. Here, they are examined by considering the case where a sphere is at an arbitrary position in a spherical cavity under conditions of low surface potential and weak applied electrical field. Previous analyses are extended to the case of a non-Newtonian fluid, and a Carreau model is adopted to this purpose. The effects of key parameters such as the thickness of a double layer. the relative sizes of particle and cavity, the position of a particle, and the nature of a fluid on the electrophoretic mobility of a particle are discussed. Several interesting phenomena are observed. For example, if the applied electric field points toward north, the mobility of a particle has a local maximum when it is at the center of a cavity. However, if a particle is sufficiently close to the north pole of a cavity, its mobility exhibits a local minimum as its position varies. This does not Occur when the particle is close to the south pole of the cavity; instead, it may move in the direction opposite to that of the applied electric field. For a Newtonian fluid, if a particle is close to the north pole of a cavity, its upward movement yields a clockwise (counterclockwise) vortex near the north pole of the cavity and a counterclockwise (clockwise) vortex near the south pole of the cavity on its right (left)-hand side. The latter is not observed for a Carreau fluid. (C) 2004 Elsevier Inc. All rights reserved.
Keywords:electrophoresis;carreau fluid;boundary effect;sphere in spherical cavity;arbitrary position