화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.126, No.46, 15253-15257, 2004
Local measures of intermolecular free energies in solution
Proton spin-lattice relaxation rate changes induced by freely diffusing oxygen in aqueous and mixed solvents are reported for representative amino acids and glucose. The local oxygen concentration at each spectrally resolved proton was deduced from the paramagnetic contribution to the relaxation rate. The measured relaxation increment is compared to that of the force-free diffusion relaxation model, and the differences are related to a free energy for the oxygen association with different portions of the solute molecules. The free energy differences are small, on the order of -800 to -2000 J/mol, but are uniformly negative for all proton positions measured on the amino acids in water and reflect the energetic benefit of weak association of hydrophobic cosolutes. For glucose, CH proton positions report negative free energies for oxygen association, the magnitude of which depends on the solvent; however, the hydroxyl positions report positive free energy differences relative to the force-free diffusion model, which is consistent with partial occupancy in the OH region by a solvent hydrogen bond.