화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.126, No.48, 15897-15904, 2004
Molecular conductance: Chemical trends of anchoring groups
Combining density functional theory calculations for molecular electronic structure with a Green function method for electron transport, we calculate from first principles the molecular conductance of benzene connected to two Au leads through different anchoring atoms-S, Se, and Te. The relaxed atomic structure of the contact, different lead orientations, and different adsorption sites are fully considered. We find that the molecule-lead coupling, electron transfer, and conductance all depend strongly on the adsorption site, lead orientation, and local contact atomic configuration. For flat contacts the conductance decreases as the atomic number of the anchoring atom increases, regardless of the adsorption site, lead orientation, or bias. For small bias this chemical trend is, however, dependent on the contact atomic configuration: an additional Au atom at the contact with the (111) lead changes the best anchoring atom from S to Se, although for large bias the original chemical trend is recovered.