화학공학소재연구정보센터
Langmuir, Vol.20, No.24, 10517-10525, 2004
Characterization of polyelectrolyte multilayers by the streaming potential method
Polyelectrolyte multilayer adsorption on mica was studied by the streaming potential method in the parallel-plate channel setup. The technique was calibrated by performing model measurements of streaming potential by using monodisperse latex particles. Two types of polyelectrolytes were used in our studies: poly(allylamine) hydrochloride (PAH), of a cationic type, and poly(sodium 4-styrenesulfonate) (PSS) of an anionic type, both having molecular weight of 70 000. The bulk characteristics of polymers were determined by measuring the specific density, diffusion coefficient for various ionic strengths, and zeta potential. These measurements as well as molecular dynamic simulations of chain shape and configurations suggested that the molecules assume an extended, wormlike shape in the bulk. Accordingly, the diffusion coefficient was interpreted in terms of a simple hydrodynamic model pertinent to flexible rods. These data allowed a proper interpretation of polyelectrolyte multilayer adsorption from NaCl solutions of various concentrations or from 10(-3) M Tris buffer. After completing a bilayer, periodic variations in the apparent zeta potential between positive and negative values were observed for multilayers terminated by PAH and PSS, respectively. These limiting zeta potential values correlated quite well with the zeta potential of the polymers in the bulk. The stability of polyelectrolyte films against prolonged washing (reaching 26 h) also was determined using the streaming potential method. It was demonstrated that the PSS layer was considerably more resistant to washing, compared to the PAH layer. It was concluded that the experimental data were consistent with the model postulating particle-like adsorption of polyelectrolytes with little chain interpenetration. It also was concluded that due to high sensitivity, the electrokinetic method applied can be effectively used for quantitative studies of polyelectrolyte adsorption, desorption, and reconformation.