Langmuir, Vol.20, No.25, 10779-10784, 2004
Nanoparticle dispersion on reconstructed carbon nanomeshes
A nanoporous template which can be used for the preparation of monodispersed metal nanoparticles can have wide-ranging applications in the catalyzed growth of single-walled nanotubes, as well as the preparation of energetic, nanostructured ferromagnetic particle arrays. Here, we found that a honeycomb-like carbon nanomesh with periodically arranged pores of similar to2-nm dimension could be fabricated on the reconstructed 6H-SiC(0001) surface. The carbon nanomesh arises from the periodic arrangement of segregated carbon clusters on the 6H-SiC surface to form a highly regular, nanoporous film. The carbon nanomesh can be dynamically structured to control the periodicity and depth of the pores by annealing in a vacuum. We evaporated cobalt on the surface of the nanomesh and investigated the diffusion and agglomeration behavior of cobalt clusters using in situ scanning tunneling microscopy. It is found that monodispersed Co nanoclusters that resist aggregation up to a temperature of 500 degreesC can be fabricated on this template.