화학공학소재연구정보센터
Polymer, Vol.45, No.24, 8211-8219, 2004
Mechanical and thermal properties of graphite platelet/epoxy composites
Anhydride-cured diglycidyl ether of bisphenol A (DGEBA) reinforced with 2.5-5% by weight graphite platelets was fabricated. The structural, mechanical, viscoelastic and thermal properties of these composites were studied and compared. XRD studies indicated that the processing of composites did not change the original d-spacing of pure graphite. Tensile property measurements of composites indicated higher elastic modulus and tensile strength with increasing concentration of graphite platelets. The storage modulus and glass transition temperatures (T-g) of the composites also increased with increasing platelet concentration, however, the coefficient of thermal expansion decreased with the addition of graphite platelets. The thermal stability was determined using thermogravimetric analysis. The composites showed higher thermal stability in comparison with pure epoxy and increased char concentration for higher graphite concentration. The effects of reinforcement on the damage mechanisms of these composites were investigated by scanning electron microscopy. (C) 2004 Elsevier Ltd. All rights reserved.