화학공학소재연구정보센터
Polymer Bulletin, Vol.53, No.1, 9-17, 2004
Synthesis of poly(methylmethacrylate)/montmorillonite nanocomposites via in situ intercalative suspension and emulsion polymerization
Na-montmorillonite (MMT) with cation exchange capacity (CEC) of 90 mEq/100g was converted to MMT-CTAB and MMT-CPC forms by the intercalation of Cetyltrimethylammonium bromide ( CTAB) and Cetylpyridinium chloride (CPC), respectively. The intercalation of these surfactants onto the basal space of the montmorillonite was evidenced by fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD). The intercalation of the CPC expanded the basal space from 12.19 Adegrees to 21.47 Adegrees while in case of CTAB it was expanded to 19.35 Adegrees only. The (MMT-CPC) was subsequently used as a host for the preparation of PMMA nanocomposites via intercalative suspension and emulsion polymerization of methylmethacrylate (MMA) using benzoyl peroxide (BPO) and potassium persulphate ( PPS) individually and simultaneously. The use of BPO and PPS together invoked better exfoliation but the yield did not change appreciably in comparison with using either of the initiators alone. Different structures were obtained with the variation of the preparation conditions; exfoliated and intercalated nanocomposites which were characterized by XRD, transmission electron microscope (TEM), thermal gravimetric analysis (TGA), and differential scanning calorimeter (DSC). The resultant nanocomposites exhibited improved thermal stability relative to the equivalent macrocomposites. No glass transition temperature (Tg) could be detected for the prepared nanocomposites which was assumed to result from the restricted molecular motion of the polymer chains.