Chemical Engineering Science, Vol.60, No.1, 239-253, 2005
Neural network model-based predictive control of liquid-liquid extraction contactors
The inherent complex nonlinear dynamic characteristics and time varying transients of the liquid-liquid extraction process draw the attention to the application of nonlinear control techniques. In this work, neural network-based control algorithms were applied to control the product compositions of a Scheibel agitated extractor of type I. Model predictive control algorithm was implemented to control the extractor. The extractor hydrodynamics and mass transfer behavior were modeled using the non-equilibrium backflow mixing cell model. It was found that model predictive control is capable of solving the servo control problem efficiently with minimum controller moves. This study will be followed by more work concentrated on using different neural network-based control algorithms for the control of extraction contactors. (C) 2004 Elsevier Ltd. All rights reserved.
Keywords:neural networks;model predictive control;modeling;dynamic simulation;liquid-liquid extraction;scheibel column