화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.127, No.6, 1963-1968, 2005
Redox Potentials of chlorophylls and beta-carotene in the antenna complexes of photosystem II
Electron transfer (ET) processes in reaction centers (RC) of photosystern II (PSII) are prerequisites of oxygen generation. They are promoted by energy transfer from antenna to RC. Here, we calculated the redox potentials of chlorophylla/beta-carotene (Chla/Car) in PSII CP43/CP47 antenna complexes, solving the linearized Poisson-Boltzmann (LPB) equation based on the PSII crystal structure. The majority of antenna Chla redox potentials for reduction/oxidation were lower than those of PC Chla. Hence, ET events with excess electrons remain localized in the RC. Simultaneously antenna Chla can serve as an efficient cation sink to rereduce RC Chla if normal PSII function is inhibited. Especially three antenna Chla (Chl-47, Chl-18, and Chl-12) and two Car bridging the space between Chl(Z(D1)) and cytochrome (cyt) b559 have the same level of oxidation redox potential. Together with Chl(Z(D2)) they form an electron hole transfer pathway and temporary storage device guiding from the oxidized P680(+.) Chla to the cyt b559. This path may play a photoprotective role as efficient electron hole quencher.