Langmuir, Vol.21, No.1, 424-430, 2005
Macromolecule encapsulation in diazoresin-based hollow polyelectrolyte microcapsules
A stable enzyme encapsulation technique based on the conversion of weak interactions between diazo resin/poly(styrene sulfonate) to covalent bonds was explored. Photosensitive diazoresin-based polyelectrolyte microcapsules were prepared via layer-by-layer electrostatic self-assembly of poly(styrene sulfonate) and diazoresin on MnCO3 templates. UV-vis and zeta-potential measurements confirmed the alternate deposition of {PSS/DAR} multilayers on the micrometer-sized dissolvable templates. The DAR-based microcapsules were demonstrated to be permeable to enzymes prior to UV irradiation, while the permeability of the multilayer wall was changed substantially after photo-cross-linking. Encapsulated molecules were stably entrapped after UV irradiation, as shown by confocal microscopy and atomic force microscopy images. Activity assays revealed that encapsulated glucose oxidase possessed 52.8% of the catalytic activity exhibited by the same amount of free enzyme, proving the preservation of native conformation and accessibility of substrate. This encapsulation technique is promising for many biomedical and biotechnological applications, particularly enzyme biosensors, which require stable immobilization of functional components while allowing sufficient transport rates for substrate molecules.