화학공학소재연구정보센터
Langmuir, Vol.21, No.1, 487-497, 2005
Simulation of interaction forces between nanoparticles in the presence of Lennard-Jones polymers: Freely adsorbing homopolymer modifiers
The force between two nanoscale colloidal particles dispersed in a solution of freely adsorbing Lennard-Jones homopolymer modifiers is calculated using the expanded grand canonical Monte Carlo simulation method. We investigate the effect of polymer chain length (N), nanoparticle diameter (sigma(c)), and colloid-polymer interaction energy (epsilon(cp)) on polymer adsorption (Gamma) and polymer-induced forces (F-P(r)) between nanoparticles in the full thermodynamic equilibrium condition. There is a strong correlation between polymer adsorption and the polymer-mediated nanoparticle forces. When the polymer adsorption is weak, as in the case of smaller diameters and short polymer chain lengths (sigma(c) = 5, N = 10), the polymers do not have any significant effect on the bare nanoparticle interactions. The adsorbed amount increases with increasing particle diameter, polymer chain length, and colloid-polymer interaction energy. In general, for strong polymer-particle adsorption the polymer-governed force profiles between nanoparticles show short-range repulsion and long-ranged attraction, suggesting that homopolymers would not be ideal for achieving stabilization in nanoparticle dispersions. The attraction is likely due to bridging, as well as polymer segment-segment interactions. The location and magnitude of attractive minimum in the force profile can be controlled by varying N and E,p. The results show partial agreement and some marked differences with previous theoretical and experimental studies of forces in the limit of flat walls in an adsorbing polymer solution. The difference could be attributed to incorporation of long-ranged colloid-polymer potential in our simulations and the influence of the curvature of the nanoparticles.