화학공학소재연구정보센터
Rheologica Acta, Vol.44, No.1, 71-79, 2004
Effects of electric fields and volume fraction on the rheology of hematite/silicone oil suspensions
Electrorheological (ER) fluids composed of iron(III) oxide ( hematite) particles suspended in silicone oil are studied in this work. The rheological response has been characterized as a function of field strength, shear rate and volume fraction. The dielectric properties of the suspensions were first studied in order to get information about the conductivity of the solid. Rheological tests under a. c. electric fields elucidated the influence of the electric field strength and volume fraction on the field-dependent yield stress. It was found that this quantity scales as a square power law in both cases. The viscosities of electrified suspensions were found to increase by several orders of magnitude as compared to the unelectrified suspension at low shear rates, although at high shear rates hydrodynamic effects become dominant and no effects of the electric field on the viscosity are observed. The ER behaviour of the suspensions was analysed by considering the fundamental forces ( of hydrodynamic and electrostatic origin) acting on the particles and it is found that, at a given volume fraction, all the dependencies of relative viscosity on shear rate and field strength can be described by a single function of the Mason number, Mn. Finally, two different chain models were used to explain the shear-thinning behaviour observed: rheological measurements showed a power-law dependence of relative viscosity decrease on the Mason number, eta(F)similar toMn(Delta), with Deltaapproximate to-0.95.