Thin Solid Films, Vol.473, No.2, 224-229, 2005
Prediction of thin film thickness of field emission using wavelet neural networks
Based on wavelet transforms extracting characteristic features from experimental data, the wavelet neural network (WNN) is used as an elementary model to study the characteristics of field emission from thin films. The WNN model is trained with learning samples of thin film thickness. The function mappings that the trained WNN model contains are the very ones that thin film thickness varies with characteristic parameters of field emission. A predicting model on thin film thickness of field emission is obtained. The data of thickness of diamond thin films is used to test this model. The results show that the absolute value of the relative error is within 2.98%, and the well-trained WNN model possesses good forecasting characteristics. (C) 2004 Published by Elsevier B.V.