화학공학소재연구정보센터
Chemical Engineering Science, Vol.60, No.7, 2005-2015, 2005
Analysis of shear-induced coagulation in an emulsion polymerisation reactor using computational fluid dynamics
Shear-dependent coagulation is a costly problem for the latex manufacturing industry, due to product degradation and reactor downtime. In this study, a method for calculating the shear-dependent coagulation rate in emulsion polymerisation is developed. The method combines simple models for coagulation (only binary collisions being considered) with the effects of rheology on the flow field, using computational fluid dynamics (CFD) to solve the detailed flow field in the reaction vessel. By using the local shear rates (LSR), the method developed provides a more detailed and system-specific assessment compared with using an average shear rate (ASR) for calculating the coagulation rate. The difference in the predictions between the ASR and the proposed LSR method was investigated. It was found that the ASR and LSR methods predict different coagulation rates, especially for more sophisticated coagulation models where the coagulation rate is not linearly dependent on the shear rate. The LSR method was also used to study the effect of the theology of the latex, of the impeller speed and of the reactor design on the coagulation rate. It was found that the LSR method is useful for providing both visual and numerical means to identify regions with elevated coagulation rates in the modelled reaction vessel. The treatment provides estimates of the amounts of coagulum formed on the vessel walls and on the impeller. (c) 2005 Elsevier Ltd. All rights reserved.