화학공학소재연구정보센터
Langmuir, Vol.21, No.5, 1866-1874, 2005
Surface reactions of 1-propanethiol on GaAs(100)
The adsorption and decomposition pathways of 1-propanethiol on a Ga-rich GaAs(100) surface have been investigated using the techniques of temperature programmed desorption, X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). 1-Propanethiol adsorbs dissociatively on a clean GaAs(100) surface to form propanethiolate and hydrogen. Further reactions of these species to form new products compete with the recombinative desorption of molecular propanethiol. The C-S bond scission in the propanethiolate results in the formation of propyl species and elemental sulfur. The generation of propene via P-hydride elimination then follows. In addition, propane and hydrogen form via reductive elimination processes. A recombinative high-temperature propanethiol desorption state is also observed. XPS and TOF-SIMS analyses confirm the presence of sulfur on the GaAs(100) surface following thermal decomposition. This paper discusses the mechanisms by which these products form on the GaAs(100) surface.