화학공학소재연구정보센터
Macromolecular Research, Vol.13, No.2, 120-127, April, 2005
Surface and Chemical Properties of Surface-Modified UHMWPE Powder and Mechanical and Thermal Properties of Its Impregnated PMMA Bone Cement V. Effect of Silane Coupling Agent on the Surface Modification of UHMWPE Powder
E-mail:
Conventional poly(methyl methacrylate) (PMMA) bone cement has been widely used as an useful biopolymeric material to fix bone using artificial prostheses. However, many patients had to be reoperated, due to the poor mechanical and thermal properties of conventional PMMA bone cement, which are derived from the presence of unreacted MMA liquid, the shrinkage and bubble formation that occur during the curing process of the bone cement, and the high curing temperature (above 100 ℃) which has to be used. In the present study, a composite PMMA bone cement was prepared by impregnating conventional PMMA bone cement with ultra high molecular weight polyethylene (UHMWPE) powder, in order to improve its mechanical and thermal properties. The UHMWPE powder has poor adhesion with other biopolymeric materials due to the inertness of the powder surface. Therefore, the surface of the UHMWPE powder was modified with two kinds of silane coupling agent containing amino groups (3-amino propyltriethoxysilane (TSL 8331®) and N-(2-aminoethyl)-3-(amino propyltrimethoxysilane) (TSL 8340®)), in order to improve its bonding strength with the conventional PMMA bone cement. The tensile strengths of the composite PMMA bone cements containing 3 wt% of the UHMWPE powder surface-modified with various ratios of TSL 8331® and TSL 8340® were similar or a little higher than that of the conventional PMMA bone cement. However, no significant difference in the tensile strengths between the conventional PMMA bone cement and the composite PMMA bone cements could be found. However, the curing temperatures of the composite PMMA bone cements were significantly decreased.
  1. Khang G, Lee HB, Biomedical Polymers, Munundang, Korean Chemical Society Press, 2002, pp 33-36 (2002)
  2. Lindner L, Acta Orthop. Scand., 47, 3 (1976)
  3. Yang DH, Yoon GH, Kim SH, Rhee JM, Khang G, Polym.(Korea), 28(1), 77 (2004)
  4. Park KD, Khang G, Lee HB, Park JB, Bio-Med. Mater. Eng., 11, 311 (2001)
  5. Park KD, Kim J, Yang SJ, Yao A, Park JB, J. Biomed. Mater. Res., 65B, 272 (2003) 
  6. Kang YH, Park JB, J. Biomed. Mater. Res., 43, 261 (1998) 
  7. Rejda BV, Peelen JG, DeGroot K, J. Biomed. Mater. Res., 22, 751 (1998) 
  8. Yang JM, Hung PY, Yang MC, Lo SK, J. Biomed. Mater. Res., 40, 361 (1997)
  9. Park KD, Kang YH, Park JB, J. Long Term. Eff. Med. Implants, 9, 303 (1999)
  10. Khang G, Kang YH, Lee HB, Park JB, Bio-Med. Mater. Eng., 6, 335 (1996)
  11. Park KD, Park JB, J. Biomed. Mater. Res., 53, 737 (2000) 
  12. Berzen J, "Standardization of UHMWPE for Use as Implant Material", in Ultra-High Molecular Weight Polyethylene as Biomaterial in Orthopedic Surgery, H. G. Willert, G. H. Buchhorn, and P. Eyerer, Eds., Hogrefe & Huber Pub., Toronto (1991)
  13. Oh I, Sander TW, Treharne RW, Clin. Orthop. Rel. Res, 189, 308 (1984)
  14. Hild DN, Schwartz P, J. Mater. Sci. -Mater. Med., 4, 481 (1993) 
  15. Silverstein MS, Breuer O, Dodiuk H, J. Appl. Polym. Sci., 52(12), 1785 (1994) 
  16. Chan CM, Polymer Surface Modification and Characterization, Munich, Hanser Publishers (1993)
  17. Chu KT, Oshida Y, Hancock EB, Kowolik MJ, Barco T, Zunt SL, Bio-Med. Mater. Eng., 14, 87 (2004)
  18. Saha S, Pal S, J. Biomech., 17, 467 (1984) 
  19. Hodosh MG, Shklar G, Povar M, J. Biomed. Mater. Res., 9, 97 (1975) 
  20. Serbetci K, Korkusuz F, Hasirci N, Polym. Test, 23, 145 (2004) 
  21. Yang JM, Lu CS, Hsu YH, Shih CH, J. Biomed. Mater. Res., 38, 143 (1997) 
  22. Yang JM, Lu CS, Hsu YH, Shih CH, J. Biomed. Mater. Res., 48, 52 (1999) 
  23. Friis EA, Cooke FW, Yasuca HK, in Fifth World Biomater. Congr. Toronto, Canada, 913 (1996)
  24. Pal S, Saha S, Biomaterials, 3, 93 (1982) 
  25. Knoell A, Maxwell H, Bechtol C, Ann. Biomed. Eng., 3, 225 (1975) 
  26. Saha S, Pal S, J. Biomech., 17, 467 (1984) 
  27. Wright TM, Trent PS, J. Mater. Sci., 14, 503 (1979) 
  28. Park HC, Liu YK, Lakes RS, J. Biomech. Eng., 108, 141 (1986)
  29. Liu YK, Park JN, Njus GO, Stienstra D, J. Biomed. Mater. Res., 21, 247 (1987) 
  30. Topoleski LDT, Ducheyne P, Cuckler JM, J. Biomed. Mater. Res., 26, 1595 (1992)
  31. Gilbert JL, Ney DS, Lautenschlager EP, in 20th Annu. Meeting Soc. Biomater., San Francisco, 141 (1994)
  32. Buckley CA, Gilbert JL, Lautenschlager EP, J. Appl. Polym. Sci., 44, 1321 (1992) 
  33. Pourdeyhimi B, Wagner HD, J. Biomed. Mater. Res., 23, 63 (1989) 
  34. Berzen J, in Ultra-High Molecular Weight Polyethylene as Biomaterial in Orthopedic Surgery, H. G. Willert, G. H. Buchhorn, and P. Eyerer, Eds., Hogrefe & Huber Pub., Toronto (1991)
  35. Yang DH, Yoon GH, Kim SH, Rhee JM, Khang G, J. Biomed. Mater. Res., (Appl. Biomater.), accepted (2005)
  36. Yang DH, Yoon GH, Kim SH, Rhee JM, Khang G, Bio-Med. Mater. Eng., in press (2005)
  37. Yang DH, Yoon GH, Kim SH, Rhee JM, Khang G, J. Biomater. Sci.-Polym. Ed., in press (2005)
  38. Qing L, Jiang D, Chambers DE, Debnath S, Wunder SL, Baran GR, J. Biomed. Mater. Res., 57, 384 (2001) 
  39. Debnath S, Wunder SL, McCool JI, Baran GR, Acad. Dental Mater., 19, 441 (2003) 
  40. Pavia DL, Lampman GM, Kriz GS, Introduction to Spectroscopy, Brooks/Cole, Duxbury, Heinle & Heinle, Schirmer, Wadsworth, and West, 2001, pp 72-74
  41. LeChatelier H, Compt. Rend., 196, 1557 (1993)
  42. Yerby SA, Paal AF, Young PM, Beaupre GS, Ohashi KL, Goodman SB, J. Biomed. Mater. Res., 49, 127 (2000)