화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.109, No.12, 2711-2717, 2005
Wavelength-dependent stereodifferentiation in the fluorescence quenching of asymmetric naphthalene-based dyads by amines
In the present contribution, wavelength has been used as a tunable parameter to achieve selective control of the photophysics of two novel asymmetric bichromophoric dyads composed of naphthalene units, i.e., 6-methoxynaphthalene (NPX) and 1-methylnaphthalene (NAP) derivatives, with different electronic properties, connected by an amide spacer [(SS) and (SR)-NPX-NAP]. As model systems, relevant monochromophoric compounds (NPX-M and NAP-M) have also been investigated. While upon excitation at 325 nm the light energy remained in the NPX moiety, at 290 nm an efficient singlet-singlet energy transfer ((DssET of about 97%) from the NAP unit to the NPX chromophore dominated. A remarkable stereodifferentiation was observed in the excited-state quenching by triethylamine via exciplex formation. The results demonstrate that it is possible to control configuration-dependent interactions in the excited state by wavelength tuning. This can be rationalized through intramolecular interactions of T systems leading to modulation of the redox properties.